Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 90(5): 3357-3365, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29424228

RESUMEN

In this work, a new hypothesis for the electrocatalytic behavior of CuO electrodes is presented. Different from the established mechanism, here we discuss why CuIII species do not participate in the oxidation mechanism of carbohydrates. We show that hydroxyl ion adsorption and the semiconductive properties of the material play a more significant role in this process. The relationship between the flat band potential and the potential that begin oxidation suggests that the concentration of vacancies in the charge region acts upon the reactivity of the adsorbed hydroxyl ions through a partial charge transfer reaction. In the presence of carbohydrate molecules, the electron transfer is facilitated and involves the transfer of electrons from the adsorbed hydroxyl ions to the CuO film. This mechanism is fundamentally relevant since it helps the understanding of several experimental misleads. The results can also lead to obtaining better catalysts, since improvements in the material should focus on enhancing the semiconductive properties rather than the CuII/CuIII redox transition. The results shed light on different aspects of carbohydrate molecules oxidation that could lead to novel applications and possibly a better description of other semiconductor mechanisms in electrocatalysis.

2.
J Chem Phys ; 147(8): 084703, 2017 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-28863534

RESUMEN

Enhancing Raman signatures of molecules by self-assembled metal nanoparticles, nanolithography patterning, or by designing plasmonic nanostructures is widely used for detection of low abundance biological systems. Self-assembled peptide nanostructures provide a natural template for tethering Au and Ag nanoparticles due to its fractal surface. Here, we show the use of L,L-diphenylalanine micro-nanostructures (FF-MNSs) for the organization of Ag and Au nanoparticles (Nps) and its potential as surface-enhanced Raman scattering (SERS)-active substrates. The FF-MNSs undergo an irreversible phase transition from hexagonally packed (hex) micro-nanotubes to an orthorhombic (ort) structure at ∼150 °C. The metal Nps form chains on hex FF-MNSs as inferred from transmission electron microscopy images and a uniform non-aggregated distribution in the ort phase. The high luminescence from the ort FF-MNS phase precludes SERS measurements with AgNps. The calculated Raman spectra using density-functional theory shows a higher intensity from rhodamine 6G (R6G) molecule in the presence of an Ag atom bound to ort FF compared with hex FF. The SERS spectra obtained from R6G bound to FF-MNSs with AuNps clearly show a higher enhancement for the ort phase compared with hex FF, corroborating our theoretical calculations. Our results indicate that FF-MNSs both in the hex and ort phases can be used as substrates for the SERS analysis with different metal nanoparticles, opening up a novel class of optically active bio-based substrates.

3.
J Phys Chem B ; 117(3): 733-40, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23286315

RESUMEN

We report for the first time on the self-assembly of nanostructures composed exclusively of alternating positively charged and hydrophobic amino acids. A novel arginine/phenylalanine octapeptide, RF8, was synthesized. Because the low hydrophobicity of this sequence makes its spontaneous ordering through solution-based methods difficult, a recently proposed solid-vapor approach was used to obtain nanometric architectures on ITO/PET substrates. The formation of the nanostructures was investigated under different preparation conditions, specifically, under different gas-phase solvents (aniline, water, and dichloromethane), different peptide concentrations in the precursor solution, and different incubation times. The stability of the assemblies was experimentally studied by electron microscopy and thermogravimetric analysis coupled with mass spectrometry. The secondary structure was assessed by infrared and Raman spectroscopy, and the arrays were found to assume an antiparallel ß-sheet conformation. FEG-SEM images clearly reveal the appearance of fibrillar structures that form extensive homogeneously distributed networks. A close relationship between the morphology and preparation parameters was found, and a concentration-triggered mechanism was suggested. Molecular dynamics simulations were performed to address the thermal stability and nature of intermolecular interactions of the putative assembly structure. Results obtained when water is considered as solvent shows that a stable lamellar structure is formed containing a thin layer of water in between the RF8 peptides that is stabilized by H-bonding.


Asunto(s)
Dipéptidos/química , Gases/química , Nanoestructuras/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Oligopéptidos/síntesis química , Oligopéptidos/química , Estructura Secundaria de Proteína , Solventes/química , Temperatura , Compuestos de Estaño/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA