Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Dev Dis ; 11(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39057617

RESUMEN

Hypoxia can induce pulmonary edema (PE) and inflammation. Furthermore, hypoxia depresses left ventricular (LV) inotropy despite sympathetic activation. To study the role of hypoxic sympathetic activation, we investigated the effects of hypoxia with and without adrenergic blockade (AB) on cardiovascular dysfunction and lung injury, i.e., pulmonary edema, congestion, inflammation, and nitrosative stress. Eighty-six female rats were exposed for 72 h to normoxia or normobaric hypoxia and received infusions with NaCl, prazosin, propranolol, or prazosin-propranolol combination. We evaluated hemodynamic function and performed histological and immunohistochemical analyses of the lung. Hypoxia significantly depressed LV but not right ventricular (RV) inotropic and lusitropic functions. AB significantly decreased LV function in both normoxia and hypoxia. AB effects on RV were weaker. Hypoxic rats showed signs of moderate PE and inflammation. This was accompanied by elevated levels of tumor necrosis factor α (TNFα) and nitrotyrosine, a marker of nitrosative stress in the lungs. In hypoxia, all types of AB markedly reduced both TNFα and nitrotyrosine. However, AB did not attenuate PE. The results suggest that hypoxia-induced sympathetic activation contributes to inflammation and nitrosative stress in the lungs but not to PE. We suggest that AB in hypoxia aggravates hypoxia-induced inotropic LV dysfunction and backlog into the pulmonary circulation, thus promoting PE.

2.
Pflugers Arch ; 474(10): 1053-1067, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35778581

RESUMEN

Acute hypoxia impairs left ventricular (LV) inotropic function and induces development of pulmonary edema (PE). Enhanced and uneven hypoxic pulmonary vasoconstriction is an important pathogenic factor of hypoxic PE. We hypothesized that the potent vasodilator relaxin might reduce hypoxic pulmonary vasoconstriction and prevent PE formation. Furthermore, as relaxin has shown beneficial effects in acute heart failure, we expected that relaxin might also improve LV inotropic function in hypoxia. Forty-two rats were exposed over 24 h to normoxia or hypoxia (10% N2 in O2). They were infused with either 0.9% NaCl solution (normoxic/hypoxic controls) or relaxin at two doses (15 and 75 µg kg-1 day-1). After 24 h, hemodynamic measurements and bronchoalveolar lavage were performed. Lung tissue was obtained for histological and immunohistochemical analyses. Hypoxic control rats presented significant depression of LV systolic pressure by 19% and of left and right ventricular contractility by about 40%. Relaxin did not prevent the hypoxic decrease in LV inotropic function, but re-increased right ventricular contractility. Moreover, hypoxia induced moderate interstitial PE and inflammation in the lung. Contrasting to our hypothesis, relaxin did not prevent hypoxia-induced pulmonary edema and inflammation. In hypoxic control rats, PE was similarly distributed in the apical and basal lung lobes. In relaxin-treated rats, PE index was 35-40% higher in the apical than in the basal lobe, which is probably due to gravity effects. We suggest that relaxin induced exaggerated vasodilation, and hence pulmonary overperfusion. In conclusion, the results show that relaxin does not prevent but rather may aggravate PE formation.


Asunto(s)
Edema Pulmonar , Relaxina , Animales , Hipoxia/complicaciones , Neumonía/terapia , Arteria Pulmonar , Edema Pulmonar/etiología , Edema Pulmonar/prevención & control , Ratas , Relaxina/farmacología , Relaxina/uso terapéutico , Solución Salina/farmacología , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA