Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 25(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38136464

RESUMEN

We describe boson sampling of interacting atoms from the noncondensed fraction of Bose-Einstein-condensed (BEC) gas confined in a box trap as a new platform for studying computational ♯P-hardness and quantum supremacy of many-body systems. We calculate the characteristic function and statistics of atom numbers via the newly found Hafnian master theorem. Using Bloch-Messiah reduction, we find that interatomic interactions give rise to two equally important entities-eigen-squeeze modes and eigen-energy quasiparticles-whose interplay with sampling atom states determines the behavior of the BEC gas. We infer that two necessary ingredients of ♯P-hardness, squeezing and interference, are self-generated in the gas and, contrary to Gaussian boson sampling in linear interferometers, external sources of squeezed bosons are not required.

2.
Phys Rev Lett ; 91(24): 243004, 2003 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-14683115

RESUMEN

When ground-state atoms are accelerated through a high Q microwave cavity, radiation is produced with an intensity which can exceed the intensity of Unruh acceleration radiation in free space by many orders of magnitude. The reason is a strong nonadiabatic effect at cavity boundaries and its interplay with the standard Unruh effect. The cavity field at steady state is still described by a thermal density matrix under most conditions. However, under some conditions gain is possible, and when the atoms are injected in a regular fashion, squeezed radiation can be produced.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA