RESUMEN
The critical role of G protein-coupled receptor kinase 2 (GRK2) in regulating cardiac function has been well documented for >3 decades. Targeting GRK2 has therefore been extensively studied as a novel approach to treating cardiovascular disease. However, little is known about its role in hemostasis and thrombosis. We provide here the first evidence that GRK2 limits platelet activation and regulates the hemostatic response to injury. Deletion of GRK2 in mouse platelets causes increased platelet accumulation after laser-induced injury in the cremaster muscle arterioles, shortens tail bleeding time, and enhances thrombosis in adenosine 5'-diphosphate (ADP)-induced pulmonary thromboembolism and in FeCl3-induced carotid injury. GRK2-/- platelets have increased integrin activation, P-selectin exposure, and platelet aggregation in response to ADP stimulation. Furthermore, GRK2-/- platelets retain the ability to aggregate in response to ADP restimulation, indicating that GRK2 contributes to ADP receptor desensitization. Underlying these changes in GRK2-/- platelets is an increase in Ca2+ mobilization, RAS-related protein 1 activation, and Akt phosphorylation stimulated by ADP, as well as an attenuated rise of cyclic adenosine monophosphate levels in response to ADP in the presence of prostaglandin I2. P2Y12 antagonist treatment eliminates the phenotypic difference in platelet accumulation between wild-type and GRK2-/- mice at the site of injury. Pharmacologic inhibition of GRK2 activity in human platelets increases platelet activation in response to ADP. Finally, we show that GRK2 binds to endogenous Gßγ subunits during platelet activation. Collectively, these results show that GRK2 regulates ADP signaling via P2Y1 and P2Y12, interacts with Gßγ, and functions as a signaling hub in platelets for modulating the hemostatic response to injury.
Asunto(s)
Hemostáticos , Trombosis , Adenosina Difosfato/farmacología , Animales , Plaquetas/metabolismo , Humanos , Ratones , Agregación Plaquetaria , Trombosis/metabolismoRESUMEN
BACKGROUND: Cardiac hypertrophic growth is mediated by robust changes in gene expression and changes that underlie the increase in cardiomyocyte size. The former is regulated by RNA polymerase II (pol II) de novo recruitment or loss; the latter involves incremental increases in the transcriptional elongation activity of pol II that is preassembled at the transcription start site. The differential regulation of these distinct processes by transcription factors remains unknown. Forkhead box protein O1 (FoxO1) is an insulin-sensitive transcription factor that is also regulated by hypertrophic stimuli in the heart. However, the scope of its gene regulation remains unexplored. METHODS: To address this, we performed FoxO1 chromatin immunoprecipitation-deep sequencing in mouse hearts after 7 days of isoproterenol injections (3 mg·kg-1·mg-1), transverse aortic constriction, or vehicle injection/sham surgery. RESULTS: Our data demonstrate increases in FoxO1 chromatin binding during cardiac hypertrophic growth, which positively correlate with extent of hypertrophy. To assess the role of FoxO1 on pol II dynamics and gene expression, the FoxO1 chromatin immunoprecipitation-deep sequencing results were aligned with those of pol II chromatin immunoprecipitation-deep sequencing across the chromosomal coordinates of sham- or transverse aortic constriction-operated mouse hearts. This uncovered that FoxO1 binds to the promoters of 60% of cardiac-expressed genes at baseline and 91% after transverse aortic constriction. FoxO1 binding is increased in genes regulated by pol II de novo recruitment, loss, or pause-release. In vitro, endothelin-1- and, in vivo, pressure overload-induced cardiomyocyte hypertrophic growth is prevented with FoxO1 knockdown or deletion, which was accompanied by reductions in inducible genes, including Comtd1 in vitro and Fstl1 and Uck2 in vivo. CONCLUSIONS: Together, our data suggest that FoxO1 may mediate cardiac hypertrophic growth via regulation of pol II de novo recruitment and pause-release; the latter represents the majority (59%) of FoxO1-bound, pol II-regulated genes after pressure overload. These findings demonstrate the breadth of transcriptional regulation by FoxO1 during cardiac hypertrophy, information that is essential for its therapeutic targeting.
Asunto(s)
Cardiomegalia/metabolismo , Proteínas Relacionadas con la Folistatina/metabolismo , Proteína Forkhead Box O1/metabolismo , Uridina Quinasa/metabolismo , Animales , Cardiomegalia/genética , Proteínas Relacionadas con la Folistatina/genética , Proteína Forkhead Box O1/genética , Ratones , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Uridina Quinasa/genéticaRESUMEN
Rationale: Systemic inflammation compromises the reparative properties of endothelial progenitor cell (EPC) and their exosomes on myocardial repair, although the underlying mechanism of loss of function of exosomes from inflamed EPCs is still obscure. Objective: To determine the mechanisms of IL-10 (interleukin-10) deficient-EPC-derived exosome dysfunction in myocardial repair and to investigate if modification of specific exosome cargo can rescue reparative activity. Methods and Results: Using IL-10 knockout mice mimicking systemic inflammation condition, we compared therapeutic effect and protein cargo of exosomes isolated from wild-type EPC and IL-10 knockout EPC. In a mouse model of myocardial infarction (MI), wild-type EPC-derived exosome treatment significantly improved left ventricle cardiac function, inhibited cell apoptosis, reduced MI scar size, and promoted post-MI neovascularization, whereas IL-10 knockout EPC-derived exosome treatment showed diminished and opposite effects. Mass spectrometry analysis revealed wild-type EPC-derived exosome and IL-10 knockout EPC-derived exosome contain different protein expression pattern. Among differentially expressed proteins, ILK (integrin-linked kinase) was highly enriched in both IL-10 knockout EPC-derived exosome as well as TNFα (tumor necrosis factor-α)-treated mouse cardiac endothelial cell-derived exosomes (TNFα inflamed mouse cardiac endothelial cell-derived exosome). ILK-enriched exosomes activated NF-κB (nuclear factor κB) pathway and NF-κB-dependent gene transcription in recipient endothelial cells and this effect was partly attenuated through ILK knockdown in exosomes. Intriguingly, ILK knockdown in IL-10 knockout EPC-derived exosome significantly rescued their reparative dysfunction in myocardial repair, improved left ventricle cardiac function, reduced MI scar size, and enhanced post-MI neovascularization in MI mouse model. Conclusions: IL-10 deficiency/inflammation alters EPC-derived exosome function, content and therapeutic effect on myocardial repair by upregulating ILK enrichment in exosomes, and ILK-mediated activation of NF-κB pathway in recipient cells, whereas ILK knockdown in exosomes attenuates NF-κB activation and reduces inflammatory response. Our study provides new understanding of how inflammation may alter stem cell-exosome-mediated cardiac repair and identifies ILK as a target kinase for improving progenitor cell exosome-based cardiac therapies.
Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Exosomas/trasplante , Interleucina-10/genética , Infarto del Miocardio/terapia , Proteínas Serina-Treonina Quinasas/metabolismo , Cicatrización de Heridas , Animales , Células Cultivadas , Exosomas/metabolismo , Interleucina-10/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Función Ventricular IzquierdaRESUMEN
G protein-coupled receptor kinases (GRKs) are classically known for their role in regulating the activity of the largest known class of membrane receptors, which influence diverse biological processes in every cell type in the human body. As researchers have tried to uncover how this family of kinases, containing only 7 members, achieves selective and coordinated control of receptors, they have uncovered a growing number of noncanonical activities for these kinases. These activities include phosphorylation of nonreceptor targets and kinase-independent molecular interactions. In particular, GRK2, GRK3, and GRK5 are the predominant members expressed in the heart. Their canonical and noncanonical actions within cardiac and other tissues have significant implications for cardiovascular function in healthy animals and for the development and progression of disease. This review summarizes what is currently known regarding the activity of these kinases, and particularly the role of GRK2 and GRK5 in the molecular alterations that occur during heart failure. This review further highlights areas of GRK regulation that remain poorly understood and how they may represent novel targets for therapeutic development.
Asunto(s)
Enfermedades Cardiovasculares/enzimología , Quinasas de Receptores Acoplados a Proteína-G/fisiología , Transducción de Señal/fisiología , Animales , Enfermedades Cardiovasculares/patología , Quinasa 2 del Receptor Acoplado a Proteína-G/fisiología , Quinasa 5 del Receptor Acoplado a Proteína-G/fisiología , HumanosRESUMEN
Cardiac diseases, such as heart failure, remain leading causes of morbidity and mortality worldwide, with myocardial infarction as the most common etiology. HF is characterized by ß-adrenergic receptor (ßAR) dysregulation that is primarily due to the upregulation of G protein-coupled receptor kinases that leads to overdesensitization of ß1 and ß2ARs, and this clinically manifests as a loss of inotropic reserve. Interestingly, the "minor" ßAR isoform, the ß3AR, found in the heart, lacks G protein-coupled receptor kinases recognition sites, and is not subject to desensitization, and as a consequence of this, in human failing myocardium, the levels of this receptor remain unchanged or are even increased. In different preclinical studies, it has been shown that ß3ARs can activate different signaling pathways that can protect the heart. The clinical relevance of this is also supported by the effects of ß-blockers which are well known for their proangiogenic and cardioprotective effects, and data are emerging showing that these are mediated, at least in part, by enhancement of ß3AR activity. In this regard, targeting of ß3ARs could represent a novel potential strategy to improve cardiac metabolism, function, and remodeling.
Asunto(s)
Agonistas de Receptores Adrenérgicos beta 3/administración & dosificación , Antagonistas de Receptores Adrenérgicos beta 3/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Cardiopatías/tratamiento farmacológico , Agonistas de Receptores Adrenérgicos beta 3/metabolismo , Antagonistas de Receptores Adrenérgicos beta 3/metabolismo , Animales , Corazón , Cardiopatías/genética , Cardiopatías/metabolismo , Humanos , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismoRESUMEN
RATIONALE: Anti-inflammatory and vascular protective actions of adiponectin are well recognized. However, many fundamental questions remain unanswered. OBJECTIVE: The current study attempted to identify the adiponectin receptor subtype responsible for adiponectin's vascular protective action and investigate the role of ceramidase activation in adiponectin anti-inflammatory signaling. METHODS AND RESULTS: Adiponectin significantly reduced tumor necrosis factor (TNF)α-induced intercellular adhesion molecule-1 expression and attenuated TNFα-induced oxidative/nitrative stress in human umbilical vein endothelial cells. These anti-inflammatory actions were virtually abolished by adiponectin receptor 1 (AdipoR1-), but not AdipoR2-, knockdown (KD). Treatment with adiponectin significantly increased neutral ceramidase (nCDase) activity (3.7-fold; P<0.01). AdipoR1-KD markedly reduced globular adiponectin-induced nCDase activation, whereas AdipoR2-KD only slightly reduced. More importantly, small interfering RNA-mediated nCDase-KD markedly blocked the effect of adiponectin on TNFα-induced intercellular adhesion molecule-1 expression. AMP-activated protein kinase-KD failed to block adiponectin-induced nCDase activation and modestly inhibited adiponectin anti-inflammatory effect. In contrast, in caveolin-1 KD (Cav1-KD) cells, >87% of adiponectin-induced nCDase activation was lost. Whereas adiponectin treatment failed to inhibit TNFα-induced intercellular adhesion molecule-1 expression, treatment with sphingosine-1-phosphate or SEW (sphingosine-1-phosphate receptor agonist) remained effective in Cav1-KD cells. AdipoR1 and Cav1 colocalized and coprecipitated in human umbilical vein endothelial cells. Adiponectin treatment did not affect this interaction. There is weak basal Cav1/nCDase interaction, which significantly increased after adiponectin treatment. Knockout of AdipoR1 or Cav1 abolished the inhibitory effect of adiponectin on leukocyte rolling and adhesion in vivo. CONCLUSIONS: These results demonstrate for the first time that adiponectin inhibits TNFα-induced inflammatory response via Cav1-mediated ceramidase recruitment and activation in an AdipoR1-dependent fashion.
Asunto(s)
Adiponectina/metabolismo , Caveolina 1/metabolismo , Ceramidasas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Vasculitis/metabolismo , Adiponectina/inmunología , Caveolina 1/genética , Caveolina 1/inmunología , Ceramidasas/genética , Ceramidasas/inmunología , Células Endoteliales/inmunología , Activación Enzimática/inmunología , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana , Humanos , Rodamiento de Leucocito/inmunología , ARN Interferente Pequeño/genética , Especies de Nitrógeno Reactivo/inmunología , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Adiponectina/genética , Receptores de Adiponectina/inmunología , Receptores de Adiponectina/metabolismo , Transducción de Señal/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Vasculitis/inmunologíaRESUMEN
The genus Homodiaetus Eigenmann & Ward, 1907 is revised and four species are recognized. Its distribution is restricted to southeastern South America, from Uruguay to Paraguay river at west to the coastal drainages of Rio de Janeiro State, Brazil. Homodiaetus is currently distinguished from other genus of Stegophilinae by the combination of the following characters: origin of ventral-fin at midlength between the snout tip and the caudal-fin origin; opercle with three or more odontodes; and gill membranes confluent with the istmus. Homodiaetus anisitsi Eigenmann & Ward, 1907, is diagnosed by the caudal-fin with black middle rays, margin of upper and lower procurrent caudal-fin rays with dark stripes extending to the caudal-fin, and 3-6 opercular odontodes; H. passarellii (Ribeiro, 1944) with 6-7 opercular odontodes, 21-24 lower procurrent caudal-fin rays and 23-26 upper procurrent caudal-fin rays; H. banguela sp. nov. with 9 opercular odontodes, 17-19 lower procurrent caudal-fin rays, 17-22 upper procurrent caudal-fin rays, reduction of fourth pharyngobranchial with only three teeth and untoothed fifth ceratobranchial; and H. graciosa sp. nov. with 5-6 dentary rows, 7-9 opercular odontodes and 16-23 upper procurrent caudal-fin rays.
RESUMEN
The genus Homodiaetus Eigenmann & Ward, 1907 is revised and four species are recognized. Its distribution is restricted to southeastern South America, from Uruguay to Paraguay river at west to the coastal drainages of Rio de Janeiro State, Brazil. Homodiaetus is currently distinguished from other genus of Stegophilinae by the combination of the following characters: origin of ventral-fin at midlength between the snout tip and the caudal-fin origin; opercle with three or more odontodes; and gill membranes confluent with the istmus. Homodiaetus anisitsi Eigenmann & Ward, 1907, is diagnosed by the caudal-fin with black middle rays, margin of upper and lower procurrent caudal-fin rays with dark stripes extending to the caudal-fin, and 3-6 opercular odontodes; H. passarellii (Ribeiro, 1944) with 6-7 opercular odontodes, 21-24 lower procurrent caudal-fin rays and 23-26 upper procurrent caudal-fin rays; H. banguela sp. nov. with 9 opercular odontodes, 17-19 lower procurrent caudal-fin rays, 17-22 upper procurrent caudal-fin rays, reduction of fourth pharyngobranchial with only three teeth and untoothed fifth ceratobranchial; and H. graciosa sp. nov. with 5-6 dentary rows, 7-9 opercular odontodes and 16-23 upper procurrent caudal-fin rays.