Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Sep Sci ; 36(23): 3758-68, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24115588

RESUMEN

The present article offers a glance at achievements in single-drop microextraction(SDME), with a focus on the two most commonly used modes of this technique: headspace and direct immersion. Factors affecting SDME, such as the pH and ionic strength of the sample solution, the stirring rate, and the extraction time are briefly summarized. The requirements for the acceptor phase and the influence of the sampling temperature are presented. In addition, the potential of the application of microwave and ultrasonic energy in SDME is also discussed. Examples of the application of the headspace and direct immersion modes of SDME are given in a table as additional Supporting Information.

2.
Talanta ; 82(5): 1958-64, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20875602

RESUMEN

This paper presents a novel approach to dispersive liquid-liquid microextraction (DLLME), based on the use of an auxiliary solvent for the adjustment of density. The procedure utilises a solvent system consisting of a dispersive solvent, an extraction solvent and an auxiliary solvent, which allows for the use of solvents having a density lower than that of water as an extraction solvent while preserving simple phase separation by centrifugation. The suggested approach could be an alternative to procedures described in the literature in recent months and which have been devoted to solving the same problem. The efficiency of the suggested approach is demonstrated through the determination of gold based on the formation of the ion pair [Au(CN)(2)](-) anion with Astra Phloxine (R) reagent and its extraction using the DLLME procedure with subsequent UV-VIS spectrophotometric and graphite furnace atomic absorption spectrometric detection. The optimum conditions were found to be: pH 3; 0.8 mmol L(-1) K(4)[Fe(CN)(6)]; 0.12 mmol L(-1) R; dispersive solvent, methanol; extraction solvent, toluene; auxiliary solvent, tetrachloromethane. The calibration plots were linear in the ranges 0.39-4.7 mg L(-1) and 0.5-39.4 µg L(-1) for UV-VIS and GFAAS detection, respectively; thus enables the application of the developed method in two ranges differing from one from another by three orders of magnitude. The presented approach can be applied to the development of DLLME procedures for the determination of other compounds extractable by organic solvents with a density lower than that of water.


Asunto(s)
Fraccionamiento Químico/métodos , Cianatos/química , Oro/química , Grafito/química , Solventes/química , Espectrofotometría Atómica/métodos , Espectrofotometría Ultravioleta/métodos , Tetracloruro de Carbono/química , Iones , Metanol/química , Tolueno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA