Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(28): 34206-34214, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37394733

RESUMEN

Molybdenum disulfide (MoS2) and nanocrystalline diamond (NCD) have attracted considerable attention due to their unique electronic structure and extraordinary physical and chemical properties in many applications, including sensor devices in gas sensing applications. Combining MoS2 and H-terminated NCD (H-NCD) in a heterostructure design can improve the sensing performance due to their mutual advantages. In this study, the synthesis of MoS2 and H-NCD thin films using appropriate physical/chemical deposition methods and their analysis in terms of gas sensing properties in their individual and combined forms are demonstrated. The sensitivity and time domain characteristics of the sensors were investigated for three gases: oxidizing NO2, reducing NH3, and neutral synthetic air. It was observed that the MoS2/H-NCD heterostructure-based gas sensor exhibits improved sensitivity to oxidizing NO2 (0.157%·ppm-1) and reducing NH3 (0.188%·ppm-1) gases compared to pure active materials (pure MoS2 achieves responses of 0.018%·ppm-1 for NO2 and -0.0072%·ppm-1 for NH3, respectively, and almost no response for pure H-NCD at room temperature). Different gas interaction model pathways were developed to describe the current flow mechanism through the sensing area with/without the heterostructure. The gas interaction model independently considers the influence of each material (chemisorption for MoS2 and surface doping mechanism for H-NCD) as well as the current flow mechanism through the formed P-N heterojunction.

2.
Sensors (Basel) ; 21(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34450831

RESUMEN

A nanocrystalline diamond (NCD) layer is used as an active (sensing) part of a conductivity gas sensor. The properties of the sensor with an NCD with H-termination (response and time characteristic of resistance change) are measured by the same equipment with a similar setup and compared with commercial sensors, a conductivity sensor with a metal oxide (MOX) active material (resistance change), and an infrared pyroelectric sensor (output voltage change) in this study. The deposited layer structure is characterized and analyzed by Scanning Electron Microscopy (SEM) and Raman spectroscopy. Electrical properties (resistance change for conductivity sensors and output voltage change for the IR pyroelectric sensor) are examined for two types of gases, oxidizing (NO2) and reducing (NH3). The parameters of the tested sensors are compared and critically evaluated. Subsequently, differences in the gas sensing principles of these conductivity sensors, namely H-terminated NCD and SnO2, are described.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA