Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 211: 112301, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34968778

RESUMEN

Photoinduced hyperthermia with nanomaterials has been proven effective in photothermal therapy (PTT) of tumor tissues, but a precise control in PTT requires determination of the molecular-level mechanisms. In this paper, we determined the mechanisms responsible for the action of photoexcited gold shell-isolated nanoparticles (AuSHINs) in reducing the viability of MCF7 (glandular breast cancer) and especially A549 (lung adenocarcinoma) cells in vitro experiments, while the photoinduced damage to healthy cells was much smaller. The photoinduced effects were more significant than using other nanomaterials, and could be explained by the different effects from incorporating AuSHINs on Langmuir monolayers from lipid extracts of tumoral (MCF7 and A549) and healthy cells. The incorporation of AuSHINs caused similar expansion of the Langmuir monolayers, but Fourier-transform infrared spectroscopy (FTIR) data of Langmuir-Schaefer films (LS) indicated distinct levels of penetration into the monolayers. AuSHINs penetrated deeper into the A549 extract monolayers, affecting the vibrational modes of polar groups and carbon chains, while in MCF7 monolayers penetration was limited to the surroundings of the polar groups. Even smaller insertion was observed for monolayers of the healthy cell extract. The photochemical reactions were modulated by AuSHINs penetration, since upon irradiation the surface area of A549 monolayer decreased owing to lipid chain cleavage by oxidative reactions. For MCF7 monolayers, hydroperoxidation under illumination led to a ca. 5% increase in surface area. The monolayers of healthy cell lipid extract were barely affected by irradiation, consistent with the lowest degree of AuSHINs insertion. In summary, efficient photothermal therapy may be devised by producing AuSHINs capable of penetrating the chain region of tumor cell membranes.


Asunto(s)
Oro , Nanopartículas , Membrana Celular , Oro/farmacología , Membranas , Oxidación-Reducción
2.
Colloids Surf B Biointerfaces ; 194: 111189, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32580142

RESUMEN

Metallic nanoparticles are promising agents for photothermal cancer therapy (PTT) owing to their photostability and efficient light-to-heat conversion, but their possible aggregation remains an issue. In this paper, we report on the photoinduced heating of gold shell-isolated nanoparticles (AuSHINs) in in vitro experiments to kill human oropharyngeal (HEp-2) and breast (BT-474 and MCF-7) carcinoma cells, with cell viability reducing below 50 % with 2.2 × 1012 AuSHINs/mL and 6 h of incubation. This toxicity to cancer cells is significantly higher than in previous works with gold nanoparticles. Considering the AuSHINs dimensions we hypothesize that cell uptake is not straightforward, and the mechanism of action involves accumulation on phospholipid membranes as the PTT target for photoinduced heating and subsequent generation of reactive oxygen species (ROS). Using Langmuir monolayers as simplified membrane models, we confirmed that AuSHINs have a larger effect on 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS), believed to represent cancer cell membranes, than on 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) taken as representative of healthy eukaryotic cells. In particular, data from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) revealed an increased conformational order of DOPS tails due to the stronger adsorption of AuSHINs. Furthermore, light irradiation reduced the stability of AuSHINs containing DOPC and DOPS monolayers owing to oxidative reactions triggered by ROS upon photoinduced heating. Compared to DOPC, DOPS lost nearly twice as much material to the subphase, which is consistent with a higher rate of ROS formation in the vicinity of the DOPS monolayer.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Adsorción , Membrana Celular , Oro , Humanos , Oxidación-Reducción
3.
J Nanosci Nanotechnol ; 20(10): 6180-6190, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32384969

RESUMEN

The photodynamic therapy (PDT) has been outstanding as a promising alternative for treating different carcinomas. However, the lack of detailed knowledge on the mechanisms of action prevents exploitation of the therapy full potential. Herein we shall evaluate not only the photodynamic efficiency but the mechanism of cell death triggered by the photoactivated erythrosine in oropharyngeal cancer cells (HEp-2). Cytotoxic assays were performed by MTT at distinct concentrations (10-3 to 10-6 mol/L) and incubation time (3, 24 and 48 h) of erythrosine in HEp-2 in vitro culture. In addition to the cytotoxic effect, the mechanisms of cell death were evaluated by flow cytometry following the annexin V/propidium iodide double staining protocol. Erythrosine was incorporated by HEp-2 cells in a dose- and time-dependent pathway. The incubation of erythrosine in dark has not shown any significant effect over the culture until 24 h and 1.25×10-6 mol/L concentration, from which a small portion (<25% and statistically significant) of the cell population have undergone apoptosis. On the other hand, 50% of cell viability is reduced mainly by necrosis when 10, 3.75 and 1.9×10-6 mol/L of erythrosine concentrations at 3, 24 and 48 h of incubation are photoactivated, respectively. Bioinspired models of tumor membrane based on Langmuir monolayers of 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) mixture reveled that electrostatic interactions with the lipid head groups are the main driving forces allowing the erythrosine adsorption. Furthermore, light-induced hydroperoxidation significantly increased the surface area of the monolayers, which might be the origin of the necrotic pathway triggered in HEp-2 cells.


Asunto(s)
Carcinoma , Neoplasias Orofaríngeas , Fotoquimioterapia , Eritrosina/farmacología , Humanos , Necrosis , Xantenos
4.
Mater Sci Eng C Mater Biol Appl ; 112: 110943, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32409089

RESUMEN

Artepillin C is the main compound present in propolis from Baccharis dracunculifolia, whose antitumor activity has been the focus of many studies. Herein, we shall investigate the Artepillin C mechanisms of action against cells derived from the oropharyngeal carcinoma (HEp-2). Cytotoxicity tests revealed that the concentrations of Artepillin C required to reduce cell viability by 50% (CC50) are dependent on the incubation time, decreasing from 40.7 × 10-5 mol/L to 15.7 × 10-5 mol/L and 9.05 × 10-5 mol/L considering 12, 24 and 48 h, respectively. Hydrophobic interactions on neutral species of Artepillin C induce aggregation over the HEp-2 plasma membrane, given the acid conditions of the cellular culture. Indeed, Langmuir monolayers mimicking cellular membranes of tumor cells revealed Artepillin C affinity to interact with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) containing 20 mol% of 1,2-dipalmitoyl-sn-glychero-3-phosphoserine (DPPS), leading aggregation on giant unilamellar vesicles (GUVs) at pH 3.2. Moreover, leakage experiments on GUVs have shown that the presence of DPPS enhances the efflux of the fluorescent probe signaling the membrane permeabilization, which is the origin of the necrotic pathway triggered in HEp-2 cells, as observed by flow cytometry assays.


Asunto(s)
Antineoplásicos/farmacología , Membrana Celular/efectos de los fármacos , Fenilpropionatos/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Confocal , Fenilpropionatos/metabolismo , Fenilpropionatos/farmacología , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA