RESUMEN
AIM: To evaluate the mechanical behaviour of the dentine/cement/post interface of a maxillary central incisor using the finite element method and to compare the stresses exerted using conventional or customized post cementation techniques. METHODOLOGY: Four models of a maxillary central incisor were created using fibreglass posts cemented with several techniques: FGP1, a 1-mm-diameter conventionally cemented post; CFGP1, a 1-mm-diameter customized composite resin post; FGP2, a 2-mm-diameter conventionally cemented post; CFGP2, a 2-mm-diameter customized composite resin post. A distributed load of 1N was applied to the lingual aspect of the tooth at 45° to its long axis. Additionally, polymerization shrinkage of 1% was simulated for the resin cement. The surface of the periodontal ligament was fixed in the three axes (X =Y = Z = 0). The maximum principal stress (σ(max) ), minimum principal stress (σ(min)), equivalent von Mises stress (σ(vM) ) and shear stress (σ(shear)) were calculated for the dentine/cement/post interface using finite element software. RESULTS: The peak of σ(max) for the cement layer occurred first in CFGP1 (1.77 MPa), followed by CFGP2 (0.99), FGP2 (0.44) and FGP1 (0.2). The shrinkage stress (σ(vM) ) of the cement layer occurred as follows: FGP1 (35 MPa), FGP2 (34), CFGP1 (30.7) and CFGP2 (30.1). CONCLUSIONS: Under incisal loading, the cement layer of customized posts had higher stress concentrations. The conventional posts showed higher stress because of polymerization shrinkage.