Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Econ Entomol ; 114(1): 481-485, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33236087

RESUMEN

Sugarcane aphid Melanaphis sacchari Zehntner is a significant economic pest of grain sorghum in the United States. Effective monitoring and early detection are cornerstones for managing invasive pests. The recently developed binomial sequential sampling plan estimates sugarcane aphid economic thresholds (ETs) based on classification whether a 2-leaf sample unit has ≤ or ≥ 50 M. sacchari. In this study, we evaluated eight 2-leaf sampling units for potential use in the sequential sampling plan. From 2016 through 2017, whole plant counts of M. sacchari were recorded non-destructively in situ on sorghum plants from 140 fields located in five states. Plant canopies were stratified into three categories. Two leaves from each stratum were used to compare linear relationships between M. sacchari numbers per two-leaf sample unit and total M. sacchari density per plant. Analysis revealed that two randomly selected leaves from the middle stratum accounted more variation for estimating M. sacchari density when compared to two leaves from the other strata. Comparison of eight two-leaf sampling units within plant growth stages were variable in quantifying variation of M. sacchari densities. When growth stages were combined, the standard uppermost + lowermost leaf sample unit and a unit consisting of two randomly selected leaves from the middle stratum revealed little difference in their enumeration of variation in M. sacchari density. Because other sample units were either less predictive and/or more variable in estimating M. sacchari density, we suggest that the (L1+U1) sample unit remain the preferred method for appraising M. sacchari ETs.


Asunto(s)
Áfidos , Sorghum , Animales , Productos Agrícolas/economía , Grano Comestible , Hojas de la Planta
2.
J Econ Entomol ; 113(4): 1990-1998, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32280982

RESUMEN

The sugarcane aphid (Melanaphis sacchari Zehntner) is a significant economic pest of grain sorghum (Sorghum bicolor (L.) Moench) in the Southern United States. Current nominal and research-based economic thresholds are based on estimates of mean aphids per leaf. Because enumerating aphids per leaf is potentially time consuming, binomial sequential sampling plans for M. sacchari were developed that allow users to quickly classify the economic status of field populations and determine when an economic threshold has been exceeded. During 2016 and 2017, counts of M. sacchari were recorded from 281 sampling events in 140 sorghum fields located in six states (Oklahoma, Kansas, Texas, Arkansas, Louisiana, Mississippi) . Regression analysis was used to describe the relationships between the mean M. sacchari density per two-leaf sample and proportion of plants infested with one or more aphids. Tally thresholds of T50 and T100 aphids per two-leaf sample were selected based on goodness of fit and practicality. Stop lines for both tally thresholds were developed for selected economic thresholds using Wald's sequential probability ratio test. Model validations using an additional 48 fields demonstrated that reliable classification decisions could be made with an average of 11 samples regardless of location. This sampling system, when adopted, can allow users to easily and rapidly determine when M. sacchari infestations need to be treated.


Asunto(s)
Áfidos , Sorghum , Animales , Arkansas , Kansas , Louisiana , Mississippi , Oklahoma , Texas
3.
Environ Entomol ; 48(6): 1297-1316, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31603984

RESUMEN

Three Diorhabda spp. tamarisk beetles (Coleoptera: Chrysomelidae) were established in Texas from 2003 to 2010 for biological control of tamarisk (Tamarix spp.): Mediterranean tamarisk beetles, D. elongata (Brullé) from Greece, also established in New Mexico; subtropical tamarisk beetles, D. sublineata (Lucas) from Tunisia; and larger tamarisk beetles, D. carinata (Faldermann) from Uzbekistan. More than one million tamarisk beetles were released at 99 sites. Species establishment success ranged from 52 to 83%. All three species now co-occur in New Mexico with the northern tamarisk beetles, D. carinulata (Desbrochers). A phenotypic hybrid scoring system was developed to assess Diorhabda phenotype distributions and character mixing in hybrid zones. Widespread field populations of bispecific hybrid phenotypes for D. carinata/D. elongata and D. sublineata/D. elongata rapidly appeared following contact of parental species. Initial distributions and dispersal of Diorhabda spp. and hybrids are mapped for Texas, New Mexico, Oklahoma, and Kansas, where they produced large-scale tamarisk defoliation and localized dieback for 3-4 yr. However, populations subsequently severely declined, now producing only isolated defoliation and allowing tamarisk to recover. Diorhabda sublineata and D. elongata temporarily produced nontarget spillover defoliation of ornamental athel, Tamarix aphylla (L.) Karst, along the Rio Grande. Hybrid phenotypes were generally bimodally distributed, indicating some degree of reproductive isolation. Additional diagnostic phenotypic characters in males allowed more precise hybrid scoring. Character mixing in some hybrid populations approached or reached that of a hybrid swarm. The significance of hybridization for tamarisk biocontrol is discussed.


Asunto(s)
Escarabajos , Tamaricaceae , Animales , Grecia , Kansas , Masculino , New Mexico , Oklahoma , Texas , Túnez
4.
J Econ Entomol ; 112(5): 2215-2221, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31214703

RESUMEN

The bermudagrass stem maggot, Atherigona reversura Villeneuve (Diptera: Muscidae), was first reported damaging bermudagrass Cynodon dactylon (L.) Pers grown for forage in 2010 in the southeastern United States. Injury results from individual larvae feeding internally on the vascular tissue just above the terminal node of the grass stem. Injury slows plant growth and reduces forage accumulation. To address the need for economic guidelines to manage this new pest, the relationship between the percent of stems damaged by bermudagrass stem maggot and forage yield was measured in commercial bermudagrass hay fields in northcentral Texas. Yield loss was estimated to be 9.97 kg/ha (8.90 lbs /acre) for each percentage of stems with bermudagrass stem maggot damage. This relationship was used to calculate economic injury levels for a range of hay market values and control costs. The impact of stem damage on protein content, energy, and digestibility of bermudagrass hay was also investigated. Although there was a significant trend for declining forage quality with increasing stem damage, stem damage explained very little of the model's variability.


Asunto(s)
Cynodon , Muscidae , Alimentación Animal , Animales , Larva , Sudeste de Estados Unidos , Texas
5.
J Econ Entomol ; 110(3): 1052-1061, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28453741

RESUMEN

The Hessian fly, Mayetiola destructor Say, is an important pest of winter wheat in the Southern Great Plains of the United States. As larvae feed behind the leaf sheath, infestations often go undetected until crop damage is evident, and there are no remedial actions that can prevent economic loss once a field is infested. The recent discovery of the sex-attractant pheromone of the Hessian fly provides an opportunity to use pheromone traps to detect and monitor adult activity and potentially better manage this pest. Adult male Hessian fly activity was monitored during 4 yr at six locations from northcentral Oklahoma, 36° N latitude, south to central Texas, 31° N latitude. In Oklahoma, trap captures were low in the fall, no flies were captured during the winter, and the largest number of flies was captured in the spring. However, in southcentral Texas, adults were captured throughout the fall, winter, and in the spring when trap captures were again the greatest. The relationship between trap captures and density of Hessian fly larvae per tiller was investigated during the fall and spring. Although large numbers of adults (>100 per trap per day) were often captured, economic infestation of larvae rarely developed. Results identify optimum times for field sampling to determine immature Hessian fly infestations in wheat in Oklahoma and Texas.


Asunto(s)
Dípteros/fisiología , Control de Insectos , Feromonas/farmacología , Animales , Dípteros/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Oklahoma , Dinámica Poblacional , Estaciones del Año , Texas , Triticum/crecimiento & desarrollo
6.
J Econ Entomol ; 106(2): 1045-52, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23786099

RESUMEN

Cotton fleahopper [Pseudatomoscelis seriatus (Reuter)] (Hemiptera: Miridae) is one of the most damaging insect pests of cotton (Gossypium hirsutum L.) in Texas and Oklahoma because of their feeding on small floral buds which are termed squares. Damage to early season squares can reduce yield, delay crop maturity and increase the risk of crop loss because of late season insect pests and adverse weather. Insecticide applications are the only control tactic. The objectives of this study were to determine the tolerance to cotton fleahopper injury to squares among upland cotton genotypes representing the adapted germplasm pools and breeding lines available to cotton breeders in the United States and to evaluate leaf hairiness as a resistant trait. Results of the choice and no-choice trials indicated that four entries, 'Stoneville 474', 'Suregrow 747', 'Deltapine 50', and 'TAM 96WD-22 h', were more tolerant to cotton fleahopper injury relative to the other 11 entries. In choice trials, cotton fleahopper density was significantly correlated with the density of trichomes on leaves, bracts and stems. However, there was no correlation between cotton fleahopper density and percent square damage in the choice trials, suggesting that in some genotypes the response to feeding injury is mediated by host plant resistance factors expressed as tolerance. Results of the no-choice studies also indicate that some genotypes express tolerance to cotton fleahopper feeding.


Asunto(s)
Antibiosis , Gossypium/genética , Heterópteros/fisiología , Animales , Cruzamiento , Conducta Alimentaria , Genotipo , Gossypium/fisiología , Control Biológico de Vectores , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Texas
7.
J Econ Entomol ; 103(3): 735-43, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20568619

RESUMEN

Field observations from pecan, Carya illinoinensis (Wangenh.) Koch, orchards in Texas were used to develop and validate a degree-day model of cumulative proportional adult flight and oviposition and date of first observed nut entry by larvae of the first summer generation of the pecan nut casebearer, Acrobasis nuxvorella Nuenzig (Lepidoptera: Pyralidae). The model was initiated on the date of first sustained capture of adults in pheromone traps. Mean daily maximum and minimum temperatures were used to determine the sum of degree-days from onset to 99% moth flight and oviposition and the date on which first summer generation larvae were first observed penetrating pecan nuts. Cumulative proportional oviposition (y) was described by a modified Gompertz equation, y = 106.05 x exp(-(exp(3.11 - 0.00669 x (x - 1), with x = cumulative degree-days at a base temperature of 3.33 degrees C. Cumulative proportional moth flight (y) was modeled as y = 102.62 x exp(- (exp(1.49 - 0.00571 x (x - 1). Model prediction error for dates of 10, 25, 50, 75, and 90% cumulative oviposition was 1.3 d and 83% of the predicted dates were within +/- 2 d of the observed event. Prediction error for date of first observed nut entry was 2.2 d and 77% of model predictions were within +/- 2 d of the observed event. The model provides ample lead time for producers to implement orchard scouting to assess pecan nut casebearer infestations and to apply an insecticide if needed to prevent economic loss.


Asunto(s)
Carya , Modelos Biológicos , Mariposas Nocturnas/fisiología , Animales , Vuelo Animal , Larva/fisiología , Nueces , Oviposición
8.
J Econ Entomol ; 101(4): 1501-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18767765

RESUMEN

The cost-reliability of five sampling methods (visual search, drop cloth, beat bucket, shake bucket, and sweep net) was determined for four groups of predatory arthropods on cotton plants in Texas. The beat bucket sample method was the most cost-reliable sampling method for Orius adults, and the beat bucket and drop cloth were the most cost-reliable methods for Orius nymphs. The drop cloth and beat bucket were the most cost-reliable methods for sampling spiders. For sampling adult Coccinellidae, the sweep net and the beat bucket were the most cost-reliable. The visual sample method was the least cost-reliable method for Orius adults and nymphs and spiders. No one sampling method was identified as the optimum method for all four predator groups. However, the relative cost-reliability of the beat bucket method ranked first or second among the five sampling methods and this method was chosen for further evaluation in field studies in Texas and Arizona. The relative cost-reliability of 1-, 3-, 5-, and 10-plants per beat bucket sample varied with predator group, but multiple plant sample units were equal to or more cost-reliable than the one plant sample unit. Fixed sample plans for the beat bucket method were developed for Orius adults, Orius nymphs, spiders, and adult Coccinellidae, and the sum of these groups using the 3-, 5-, and 10-plant sample unit sizes. The greater cost-reliability of the beat bucket sampling method and its ease of use is of particular advantage in assessing predator densities in a commercial cotton field monitoring program.


Asunto(s)
Cadena Alimentaria , Gossypium , Hemípteros , Proyectos de Investigación , Arañas , Animales , Artrópodos , Densidad de Población
9.
J Econ Entomol ; 99(1): 67-75, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16573325

RESUMEN

We characterized the level of risk of boll weevil, Anthonomus grandis grandis Boheman, reintroduction to an eradication zone posed by dispersal from cotton modules during and after transport to the gin. Mark-release-recapture experiments in August and September in Texas indicated that most weevils disperse rapidly from the module surface, temperature permitting, unless confined under a module tarp, where most died. Nevertheless, 1-5% of released weevils were recovered alive after 24 h on the side and top surfaces of modules, representing potential dispersants. Mortality of boll weevils caged on the top surface of a module was 95-100% after 1-4 d when maximum air temperatures were > or = 33 degrees C and 72-100% when minimum temperatures were -7 degrees C or lower, but a few survived even after experiencing a minimum daily temperature of -12 degrees C. Under warm (daily maximum temperatures > or = 25 degrees C) and cold (daily minimum temperatures < or = 0 degrees C) weather conditions, survival was higher under the tarp than on the open surface of the module (20 versus 7% and 42 versus 26%, respectively), but mortality was 100% in both locations when temperatures reached 34 degrees C. Our results indicate that although the threat to an eradication zone posed by boll weevil dispersal from an infested module is very low under most environmental conditions, it is probably greatest when 1) a module is constructed and transported from an infested zone during weather too cool for flight, followed by warm weather favorable for flight at the gin yard; or 2) such a module is transported immediately after construction in moderate-to-warm weather.


Asunto(s)
Agricultura/métodos , Gossypium , Enfermedades de las Plantas , Gorgojos/fisiología , Agricultura/instrumentación , Agricultura/normas , Animales , Control de Insectos/métodos , Control de Insectos/normas , Modelos Lineales , Análisis de Supervivencia , Temperatura , Factores de Tiempo , Transportes
10.
J Econ Entomol ; 97(3): 934-40, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15279274

RESUMEN

There is concern that cotton gins located in boll weevil, Anthonomus grandis grandis Boheman, eradication zones serving customers in adjacent infested zones may serve as a site for boll weevil reintroductions if weevils are transported alive inside cotton modules. We surveyed fields in three distinct areas of Texas and found that weevils can be present in large numbers in cotton fields that have been defoliated and desiccated in preparation for harvest, both as free adults and as immatures inside unopened bolls. Harvested cotton taken from module builders indicated that approximately = 100-3700 adult boll weevils were packed inside modules constructed at the sampled fields. Marked weevils were forced through a laboratory field cleaner (bur extractor) commonly mounted on stripper-harvesters, and 14% were recovered alive in the seed cotton fraction and lived at least to 24 h. Survival of weevils placed inside modules declined over time up to 7 d, but the magnitude of the decline varied with experimental conditions. In one experiment, 91% of the weevils survived to 7 d, whereas under harsher environmental conditions, only 11% survived that long. Together, our results indicate that when cotton is harvested in an infested area, boll weevils likely will be packed alive into cotton modules, and many will still be alive by the time the module is fed into the gin, at least up to 7 d after the module's construction.


Asunto(s)
Agricultura/instrumentación , Escarabajos , Gossypium , Enfermedades de las Plantas , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA