Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 366: 121678, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986383

RESUMEN

On the international level, it is common to act on reducing emissions from energy systems. However, in addition to industrial emissions, low-stack emissions also make a significant contribution. A good step in reducing its environmental impact, is to move to biofuels, including biomass. This paper examines the impact of placing a catalytic system in a retort boiler to minimize emissions of greenhouse gases, dust and other pollutants when burning pellets. The effect of platinum, and oxides of selected metals placed on the deflector as a solid catalyst was studied. Based on the experimental data, a branched artificial neural network was constructed and trained. The routing of three parallel topologies made it possible to achieve high accuracy while keeping the input data relatively simple. The system showed an average error of 3.54% against arbitrary test data. On the basis of experimental data as well as predictions returned by the artificial neural network, recommendations were shown for the catalysts used and their amounts. Depending on the biomass from which the pellet was produced, the experiment suggested the use of titanium or copper oxides. In the case of the neural network, it was able to select a better system, based on platinum, improving emission reductions by up to more than 19%, depending on the type of pellet used.


Asunto(s)
Redes Neurales de la Computación , Catálisis , Biomasa , Platino (Metal)/química , Gases de Efecto Invernadero , Contaminantes Atmosféricos , Biocombustibles
2.
Heliyon ; 10(9): e30058, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707407

RESUMEN

A concept has been proposed for an installation designed to store excess electricity periodically occurring on the grid. Excess electricity will be used for straw pyrolysis. The main pyrolysis product, gas, will be used to generate electricity using a combustion generator to feed back power into the grid during periods of shortage. The resulting biochar from the pyrolysis can be introduced into the soil to improve soil quality and play a significant role in carbon sequestration. The system uses an electrically heated reactor with a screw conveyor. To preliminarily assess the feasibility of this system, experiments were carried out using wheat straw at temperatures of 300, 400, 500, 600, and 700 °C for the pyrolysis reactor. The resulting gas-to-feedstock mass ratio ranged from 29.04 % at 300 °C to 52.7 % at 700 °C reactor temperature, the biochar mass yield ratio to feedstock varied from 39.41 % to 27.36 % (at 700 °C), and the pyrolysis liquid ranged from 31.55 % to 27.36 % (at 700 °C). The pyrolytic liquid contained a high water content relative to its mass, reaching up to 95.2 % at 700 °C, rendering it less suitable as an energy feedstock. At a reactor temperature of 700 °C, the energy value of the gas produced from the feedstock was twice that of the electricity used for the pyrolysis process. These results suggest the feasibility and operation of the proposed installation.

3.
Materials (Basel) ; 15(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36363332

RESUMEN

A comparative study was carried out of emissions from the catalytic combustion of pellets made from furniture board waste and pellets made from wood mixed with Fe2O3. The mass content of the Fe2O3 catalyst in the fuel was varied from 0% to 5%, 10%, and 15% in relation to the total dry mass weight of the pellets. The average flame temperature in the boiler was between 730 and 800 °C. The effect of the catalyst concentration in the fuel was analysed with respect to the contents of O2, CO2, CO, H2, and NOx in the flue gas and the combustion quality of the pellets in the heating boiler. Changes in the CO2 content and the proportion of unburned combustible components in the combustion residue were assessed. It was established that an increase in the Fe2O3 content of the prepared fuels had a positive effect on reducing NOx, CO, and H2 emissions. However, the proportion of iron oxide in the tested fuel pellets did not significantly influence changes in their combustion quality. A strong effect of the addition of Fe2O3 on the reduction of the average NOx content in the flue gas occurred with the combustion of furniture board fuel, from 51.4 ppm at 0% Fe2O3 to 7.7 ppm for an additive content of 15%. Based on the analysis of the residue in the boiler ash pan, the amount of unburned combustibles relative to their input amounts was found to be 0.09-0.22% for wood pellets and 0.50-0.31% for furniture board waste pellets.

4.
Materials (Basel) ; 15(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35629553

RESUMEN

This paper presents the research results of the effect of using calcium oxide and potassium permanganate on the combustion of pellets from wheat bran and beet pulp. The measurements were performed in the technical laboratory of the Centre of Energy Utilization of Non-Traditional Energy Sources in Ostrava. The research examined the effect of the use of chemical substances on the amount of air pollutants from biomass thermal conversion in a low-power boiler and the process temperature. First, we performed technical and elementary analyses of agricultural waste. The raw material was then comminuted, mixed with a selected additive, pelletized, and finally burned in a low-power boiler. The additive was added in three proportions: 1:20, 1:10, and 1:6.67 (i.e., 15%) relative to the fuel weight. The combustion process efficiency was measured using a flue gas analyzer and three thermocouples attached to the data recorder. From the measurement results, we were able to determine the percentage reduction of pollutant emissions into the atmosphere (CO, NOx, and SO2) due to the use of additives. Because emission standards are becoming increasingly stringent and fuel and energy prices are rising, the results presented in this article may be useful to agri-food processing plants that want to manage these materials thermally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA