Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 856
Filtrar
1.
mSystems ; : e0098524, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283083

RESUMEN

Large-scale studies are essential to answer questions about complex microbial communities that can be extremely dynamic across hosts, environments, and time points. However, managing acquisition, processing, and analysis of large numbers of samples poses many challenges, with cross-contamination being the biggest obstacle. Contamination complicates analysis and results in sample loss, leading to higher costs and constraints on mixed sample type study designs. While many researchers opt for 96-well plates for their workflows, these plates present a significant issue: the shared seal and weak separation between wells leads to well-to-well contamination. To address this concern, we propose an innovative high-throughput approach, termed as the Matrix method, which employs barcoded Matrix Tubes for sample acquisition. This method is complemented by a paired nucleic acid and metabolite extraction, utilizing 95% (vol/vol) ethanol to stabilize microbial communities and as a solvent for extracting metabolites. Comparative analysis between conventional 96-well plate extractions and the Matrix method, measuring 16S rRNA gene levels via quantitative polymerase chain reaction, demonstrates a notable decrease in well-to-well contamination with the Matrix method. Metagenomics, 16S rRNA gene amplicon sequencing (16S), and untargeted metabolomics analysis via liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmed that the Matrix method recovers reproducible microbial and metabolite compositions that can distinguish between subjects. This advancement is critical for large-scale study design as it minimizes well-to-well contamination and technical variation, shortens processing times, and integrates with automated infrastructure for enhancing sample randomization and metadata generation. IMPORTANCE: Understanding dynamic microbial communities typically requires large-scale studies. However, handling large numbers of samples introduces many challenges, with cross-contamination being a major issue. It not only complicates analysis but also leads to sample loss and increased costs and restricts diverse study designs. The prevalent use of 96-well plates for nucleic acid and metabolite extractions exacerbates this problem due to their wells having little separation and being connected by a single plate seal. To address this, we propose a new strategy using barcoded Matrix Tubes, showing a significant reduction in cross-contamination compared to conventional plate-based approaches. Additionally, this method facilitates the extraction of both nucleic acids and metabolites from a single tubed sample, eliminating the need to collect separate aliquots for each extraction. This innovation improves large-scale study design by shortening processing times, simplifying analysis, facilitating metadata curation, and producing more reliable results.

2.
medRxiv ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39281749

RESUMEN

BACKGROUND: The gut microbiome is a potentially modifiable factor in Alzheimer's disease (AD); however, understanding of its composition and function regarding AD pathology is limited. METHODS: Shallow-shotgun metagenomic data was used to analyze fecal microbiome from participants enrolled in the Wisconsin Microbiome in Alzheimer's Risk Study, leveraging clinical data and cerebrospinal fluid (CSF) biomarkers. Differential abundance and ordinary least squares regression analyses were performed to find differentially abundant gut microbiome features and their associations with CSF biomarkers of AD and related pathologies. RESULTS: Gut microbiome composition and function differed between people with AD and cognitively unimpaired individuals. The compositional difference was replicated in an independent cohort. Differentially abundant gut microbiome features were associated with CSF biomarkers of AD and related pathologies. DISCUSSION: These findings enhance our understanding of alterations in gut microbial composition and function in AD, and suggest that gut microbes and their pathways are linked to AD pathology.

3.
G3 (Bethesda) ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250761

RESUMEN

Genome-wide association studies typically evaluate the autosomes and sometimes the X Chromosome, but seldom consider the Y or mitochondrial Chromosomes. We genotyped the Y and mitochondrial Chromosomes in heterogeneous stock rats (Rattus norvegicus), an outbred population created from eight inbred strains. We identified 8 distinct Y and 4 distinct mitochondrial Chromosomes among the 8 founders. However, only two types of each nonrecombinant chromosome were observed in our modern heterogeneous stock rat population (generations 81-97). Despite the relatively large sample size, there were virtually no significant associations for behavioral, physiological, metabolome, or microbiome traits after correcting for multiple comparisons. However, both Y and mitochondrial Chromosomes were strongly associated with expression of a few genes located on those chromosomes, which provided a positive control. Our results suggest that within modern heterogeneous stock rats there are no Y and mitochondrial Chromosomes differences that strongly influence behavioral or physiological traits. These results do not address other ancestral Y and mitochondrial Chromosomes that do not appear in modern heterogeneous stock rats, nor do they address effects that may exist in other rat populations, or in other species.

4.
BMC Public Health ; 24(1): 2230, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152377

RESUMEN

BACKGROUND: Wearing a mask was a crucial component in slowing the COVID-19 pandemic. However, little is known about the intersectionality between mask usage, risk perception, and infection. The purpose of this study was to investigate whether risk perceptions and masking behaviors are associated with contracting SARS-CoV-2 and how contracting SARS-CoV-2 subsequently changes masking behaviors in specific situations. METHODS: This cohort study utilized survey data from the UC San Diego ZAP COVID-19 study (n = 1,230) to evaluate the risk of contracting SARS-CoV-2 in relation to baseline risk perceptions and masking behaviors in various situations and how contracting SARS-CoV-2 affects subsequent masking behavior. RESULTS: We found that more consistent self-reported mask use in indoor public spaces (p = 0.03) and in other people's houses (p = 0.002) was associated with remaining free of SARS-CoV-2 infection. We also found that contracting SARS-CoV-2 was associated with a subsequent increase in mask use in other people's houses (p = 0.01). CONCLUSIONS: Our findings suggest that consistent mask use is correlated with decreased infection and that contracting SARS-CoV-2 may modify mask use behaviors in high-risk situations. These findings may help inform future public health messaging for infectious disease prevention. TRIAL REGISTRATION: This study has not been previously registered as it is an observational study. There was no pre-registration of the analytic plan for the present study.


Asunto(s)
COVID-19 , Máscaras , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/psicología , Máscaras/estadística & datos numéricos , Masculino , Femenino , Estudios Longitudinales , Adulto , Persona de Mediana Edad , SARS-CoV-2 , California/epidemiología , Estudios de Cohortes , Encuestas y Cuestionarios , Anciano , Adulto Joven
5.
NPJ Biofilms Microbiomes ; 10(1): 69, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143108

RESUMEN

The gut microbiota (GM) can regulate bone mass, but its association with incident fractures is unknown. We used Cox regression models to determine whether the GM composition is associated with incident fractures in the large FINRISK 2002 cohort (n = 7043, 1092 incident fracture cases, median follow-up time 18 years) with information on GM composition and functionality from shotgun metagenome sequencing. Higher alpha diversity was associated with decreased fracture risk (hazard ratio [HR] 0.92 per standard deviation increase in Shannon index, 95% confidence interval 0.87-0.96). For beta diversity, the first principal component was associated with fracture risk (Aitchison distance, HR 0.90, 0.85-0.96). In predefined phyla analyses, we observed that the relative abundance of Proteobacteria was associated with increased fracture risk (HR 1.14, 1.07-1.20), while the relative abundance of Tenericutes was associated with decreased fracture risk (HR 0.90, 0.85-0.96). Explorative sub-analyses within the Proteobacteria phylum showed that higher relative abundance of Gammaproteobacteria was associated with increased fracture risk. Functionality analyses showed that pathways related to amino acid metabolism and lipopolysaccharide biosynthesis associated with fracture risk. The relative abundance of Proteobacteria correlated with pathways for amino acid metabolism, while the relative abundance of Tenericutes correlated with pathways for butyrate synthesis. In conclusion, the overall GM composition was associated with incident fractures. The relative abundance of Proteobacteria, especially Gammaproteobacteria, was associated with increased fracture risk, while the relative abundance of Tenericutes was associated with decreased fracture risk. Functionality analyses demonstrated that pathways known to regulate bone health may underlie these associations.


Asunto(s)
Fracturas Óseas , Microbioma Gastrointestinal , Humanos , Masculino , Femenino , Fracturas Óseas/microbiología , Fracturas Óseas/epidemiología , Fracturas Óseas/etiología , Persona de Mediana Edad , Finlandia/epidemiología , Anciano , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Metagenoma , Estudios de Cohortes , Incidencia , Metagenómica/métodos , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Factores de Riesgo , Adulto
6.
Pediatr Res ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138352

RESUMEN

BACKGROUND: Human milk is unquestionably beneficial for preterm infants. We investigated how the transition from tube to oral/breastfeeding impacts the preterm infants' oral and gut microbiome and metabolome. METHODS: We analyzed stool, saliva, and milk samples collected from a cohort of preterm infants enrolled in the MAP Study, a prospective observational trial. The microbiome and metabolome of the samples were analyzed from 4 longitudinal sample time points, 2 during tube feeds only and 2 after the initiation of oral/breastfeeding. RESULTS: We enrolled 11 mother-infant dyads (gestational age = 27.9 (23.4-32.2)) and analyzed a total of 39 stool, 44 saliva, and 43 milk samples over 4 timepoints. In saliva samples, there was a shift towards increased Streptococcus and decreased Staphylococcus after oral feeding/breastfeeding initiation (p < 0.05). Milk sample metabolites were strongly influenced by the route of feeding and milk type (p < 0.05) and represented the pathways of Vitamin E metabolism, Vitamin B12 metabolism, and Tryptophan metabolism. CONCLUSION: Our analysis demonstrated that the milk and preterm infant's saliva microbiome and metabolome changed over the course of the first four to 5 months of life, coinciding with the initiation of oral/breastfeeds. IMPACT: The microbiome and metabolome is altered in the infant's saliva but not their stool, and in mother's milk when feeds are transitioned from tube to oral/breastfeeding. We assessed the relationship between the gut and oral microbiome/metabolome with the milk microbiome/metabolome over a longitudinal period of time in preterm babies. Metabolites that changed in the infants saliva after the initiation of oral feeds have the potential to be used as biomarkers for disease risk.

7.
mSystems ; 9(8): e0010824, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38975760

RESUMEN

Gastrointestinal diseases are the most frequently reported clinical problems in captive common marmosets (Callithrix jacchus), often affecting the health and welfare of the animal and ultimately their use as a research subject. The microbiome has been shown to be intimately connected to diet and gastrointestinal health. Here, we use shotgun metagenomics and untargeted metabolomics in fecal samples of common marmosets collected before, during, and after a dietary transition from a biscuit to a gel diet. The overall health of marmosets, measured as weight recovery and reproductive outcome, improved after the diet transition. Moreover, each marmoset pair had significant shifts in the microbiome and metabolome after the diet transition. In general, we saw a decrease in Escherichia coli and Prevotella species and an increase in Bifidobacterium species. Untargeted metabolic profiles indicated that polyamine levels, specifically cadaverine and putrescine, were high after diet transition, suggesting either an increase in excretion or a decrease in intestinal reabsorption at the intestinal level. In conclusion, our data suggest that Bifidobacterium species could potentially be useful as probiotic supplements to the laboratory marmoset diet. Future studies with a larger sample size will be beneficial to show that this is consistent with the diet change. IMPORTANCE: Appropriate diet and health of the common marmoset in captivity are essential both for the welfare of the animal and to improve experimental outcomes. Our study shows that a gel diet compared to a biscuit diet improves the health of a marmoset colony, is linked to increases in Bifidobacterium species, and increases the removal of molecules associated with disease. The diet transition had an influence on the molecular changes at both the pair and time point group levels, but only at the pair level for the microbial changes. It appears to be more important which genes and functions present changed rather than specific microbes. Further studies are needed to identify specific components that should be considered when choosing an appropriate diet and additional supplementary foods, as well as to validate the benefits of providing probiotics. Probiotics containing Bifidobacterium species appear to be useful as probiotic supplements to the laboratory marmoset diet, but additional work is needed to validate these findings.


Asunto(s)
Callithrix , Dieta , Microbioma Gastrointestinal , Animales , Callithrix/microbiología , Microbioma Gastrointestinal/fisiología , Dieta/veterinaria , Masculino , Femenino , Heces/microbiología , Bifidobacterium/aislamiento & purificación
8.
Nat Metab ; 6(7): 1282-1293, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38951660

RESUMEN

As the microbiome field moves from descriptive and associative research to mechanistic and interventional studies, being able to account for all confounding variables in the experimental design, which includes the maternal effect1, cage effect2, facility differences3, as well as laboratory and sample handling protocols4, is critical for interpretability of results. Despite significant procedural and bioinformatic improvements, unexplained variability and lack of replicability still occur. One underexplored factor is that the microbiome is dynamic and exhibits diurnal oscillations that can change microbiome composition5-7. In this retrospective analysis of 16S amplicon sequencing studies in male mice, we show that sample collection time affects the conclusions drawn from microbiome studies and its effect size is larger than those of a daily experimental intervention or dietary changes. The timing of divergence of the microbiome composition between experimental and control groups is unique to each experiment. Sample collection times as short as only 4 hours apart can lead to vastly different conclusions. Lack of consistency in the time of sample collection may explain poor cross-study replicability in microbiome research. The impact of diurnal rhythms on the outcomes and study design of other fields is unknown but likely significant.


Asunto(s)
Microbiota , Animales , Ratones , Microbiota/genética , Masculino , Manejo de Especímenes/métodos , ARN Ribosómico 16S/genética , Factores de Tiempo , Reproducibilidad de los Resultados , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética , Estudios Retrospectivos
9.
Artículo en Inglés | MEDLINE | ID: mdl-38958286

RESUMEN

IMPORTANCE: Feasibility of home urogenital microbiome specimen collection is unknown. OBJECTIVES: This study aimed to evaluate successful sample collection rates from home and clinical research centers. STUDY DESIGN: Adult women participants enrolled in a multicentered cohort study were recruited to an in-person research center evaluation, including self-collected urogenital samples. A nested feasibility substudy evaluated home biospecimen collection prior to the scheduled in-person evaluation using a home collection kit with written instructions, sample collection supplies, and a Peezy™ urine collection device. Participants self-collected samples at home and shipped them to a central laboratory 1 day prior to and the day of the in-person evaluation. We defined successful collection as receipt of at least one urine specimen that was visibly viable for sequencing. RESULTS: Of 156 participants invited to the feasibility substudy, 134 were enrolled and sent collection kits with 89% (119/134) returning at least 1 home urine specimen; the laboratory determined that 79% (106/134) of these urine samples were visually viable for analysis. The laboratory received self-collected urine from the research center visit in 97% (115/119); 76% (91/119) were visually viable for sequencing. Among 401 women who did not participate in the feasibility home collection substudy, 98% (394/401) self-collected urine at the research center with 80% (321/401) returned and visibly viable for sequencing. CONCLUSIONS: Home collection of urogenital microbiome samples for research is feasible, with comparable success to clinical research center collection. Sample size adjustment should plan for technical and logistical difficulties, regardless of specimen collection site.

10.
NPJ Metab Health Dis ; 2(1): 15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962750

RESUMEN

Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean Ketogenic Diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.

11.
medRxiv ; 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39072018

RESUMEN

Immigrants from less industrialized countries who are living in the U.S. often bear an elevated risk of multiple disease due to the adoption of a U.S. lifestyle. Blood metabolome holds valuable information on environmental exposure and the pathogenesis of chronic diseases, offering insights into the link between environmental factors and disease burden. Analyzing 634 serum metabolites from 7,114 Hispanics (1,141 U.S.-born, 5,973 foreign-born) in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), we identified profound blood metabolic shift during acculturation. Machine learning highlighted the prominent role of non-genetic factors, especially food and gut microbiota, in these changes. Immigration-related metabolites correlated with plant-based foods and beneficial gut bacteria for foreign-born Hispanics, and with meat-based or processed food and unfavorable gut bacteria for U.S.-born Hispanics. Cardiometabolic traits, liver, and kidney function exhibited a link with immigration-related metabolic changes, which were also linked to increased risk of diabetes, severe obesity, chronic kidney disease, and asthma. Highlights: A substantial proportion of identified blood metabolites differ between U.S.-born and foreign-born Hispanics/Latinos in the U.S.Food and gut microbiota are the major modifiable contributors to blood metabolomic difference between U.S.-born and foreign-born Hispanics/Latinos.U.S. nativity related metabolites collectively correlate with a spectrum of clinical traits and chronic diseases.

12.
Microbiome ; 12(1): 129, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026261

RESUMEN

BACKGROUND: Chronic exposure to microorganisms inside homes can impact respiratory health. Few studies have used advanced sequencing methods to examine adult respiratory outcomes, especially continuous measures. We aimed to identify metagenomic profiles in house dust related to the quantitative traits of pulmonary function and airway inflammation in adults. Microbial communities, 1264 species (389 genera), in vacuumed bedroom dust from 779 homes in a US cohort were characterized by whole metagenome shotgun sequencing. We examined two overall microbial diversity measures: richness (the number of individual microbial species) and Shannon index (reflecting both richness and relative abundance). To identify specific differentially abundant genera, we applied the Lasso estimator with high-dimensional inference methods, a novel framework for analyzing microbiome data in relation to continuous traits after accounting for all taxa examined together. RESULTS: Pulmonary function measures (forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio) were not associated with overall dust microbial diversity. However, many individual microbial genera were differentially abundant (p-value < 0.05 controlling for all other microbial taxa examined) in relation to FEV1, FVC, or FEV1/FVC. Similarly, fractional exhaled nitric oxide (FeNO), a marker of airway inflammation, was unrelated to overall microbial diversity but associated with differential abundance for many individual genera. Several genera, including Limosilactobacillus, were associated with a pulmonary function measure and FeNO, while others, including Moraxella to FEV1/FVC and Stenotrophomonas to FeNO, were associated with a single trait. CONCLUSIONS: Using state-of-the-art metagenomic sequencing, we identified specific microorganisms in indoor dust related to pulmonary function and airway inflammation. Some were previously associated with respiratory conditions; others were novel, suggesting specific environmental microbial components contribute to various respiratory outcomes. The methods used are applicable to studying microbiome in relation to other continuous outcomes. Video Abstract.


Asunto(s)
Polvo , Metagenoma , Microbiota , Polvo/análisis , Humanos , Femenino , Masculino , Estados Unidos , Microbiota/genética , Persona de Mediana Edad , Pulmón/microbiología , Adulto , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Volumen Espiratorio Forzado , Agricultura , Pruebas de Función Respiratoria , Capacidad Vital , Metagenómica/métodos
13.
bioRxiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38948766

RESUMEN

Bacteroides fragilis is a prominent member of the human gut microbiota, playing crucial roles in maintaining gut homeostasis and host health. Although it primarily functions as a beneficial commensal, B. fragilis can become pathogenic. To determine the genetic basis of its duality, we conducted a comparative genomic analysis of 813 B. fragilis strains, representing both commensal and pathogenic origins. Our findings reveal that pathogenic strains emerge across diverse phylogenetic lineages, due in part to rapid gene exchange and the adaptability of the accessory genome. We identified 16 phylogenetic groups, differentiated by genes associated with capsule composition, interspecies competition, and host interactions. A microbial genome-wide association study identified 44 genes linked to extra-intestinal survival and pathogenicity. These findings reveal how genomic diversity within commensal species can lead to the emergence of pathogenic traits, broadening our understanding of microbial evolution in the gut.

14.
Circulation ; 150(3): 215-229, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39008559

RESUMEN

BACKGROUND: Dietary acculturation, or adoption of dominant culture diet by migrant groups, influences human health. We aimed to examine dietary acculturation and its relationships with cardiovascular disease (CVD), gut microbiota, and blood metabolites among US Hispanic and Latino adults. METHODS: In the HCHS/SOL (Hispanic Community Health Study/Study of Latinos), US exposure was defined by years in the United States (50 states and Washington, DC) and US nativity. A dietary acculturation pattern was derived from 14 172 participants with two 24-hour dietary recalls at baseline (2008-2011) using least absolute shrinkage and selection operator regression, with food groups as predictors of US exposure. We evaluated associations of dietary acculturation with incident CVD across ≈7 years of follow-up (n=211/14 172 cases/total) and gut microbiota (n=2349; visit 2, 2014 to 2017). Serum metabolites associated with both dietary acculturation-related gut microbiota (n=694) and incident CVD (n=108/5256 cases/total) were used as proxy measures to assess the association of diet-related gut microbiome with incident CVD. RESULTS: We identified an empirical US-oriented dietary acculturation score that increased with US exposure. Higher dietary acculturation score was associated with higher risk of incident CVD (hazard ratio per SD, 1.33 [95% CI, 1.13-1.57]), adjusted for sociodemographic, lifestyle, and clinical factors. Sixty-nine microbial species (17 enriched from diverse species, 52 depleted mainly from fiber-utilizing Clostridia and Prevotella species) were associated with dietary acculturation, driven by lower intakes of whole grains, beans, and fruits and higher intakes of refined grains. Twenty-five metabolites, involved predominantly in fatty acid and glycerophospholipid metabolism (eg, branched-chain 14:0 dicarboxylic acid** and glycerophosphoethanolamine), were associated with both diet acculturation-related gut microbiota and incident CVD. Proxy association analysis based on these metabolites suggested a positive relationship between diet acculturation-related microbiome and risk of CVD (r=0.70, P<0.001). CONCLUSIONS: Among US Hispanic and Latino adults, greater dietary acculturation was associated with elevated CVD risk, possibly through alterations in gut microbiota and related metabolites. Diet and microbiota-targeted interventions may offer opportunities to mitigate CVD burdens of dietary acculturation.


Asunto(s)
Aculturación , Enfermedades Cardiovasculares , Dieta , Microbioma Gastrointestinal , Hispánicos o Latinos , Humanos , Masculino , Femenino , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/etnología , Persona de Mediana Edad , Estados Unidos/epidemiología , Adulto , Dieta/efectos adversos , Factores de Riesgo , Incidencia
15.
Nat Med ; 30(8): 2265-2276, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38918632

RESUMEN

The association of gut microbial features with type 2 diabetes (T2D) has been inconsistent due in part to the complexity of this disease and variation in study design. Even in cases in which individual microbial species have been associated with T2D, mechanisms have been unable to be attributed to these associations based on specific microbial strains. We conducted a comprehensive study of the T2D microbiome, analyzing 8,117 shotgun metagenomes from 10 cohorts of individuals with T2D, prediabetes, and normoglycemic status in the United States, Europe, Israel and China. Dysbiosis in 19 phylogenetically diverse species was associated with T2D (false discovery rate < 0.10), for example, enriched Clostridium bolteae and depleted Butyrivibrio crossotus. These microorganisms also contributed to community-level functional changes potentially underlying T2D pathogenesis, for example, perturbations in glucose metabolism. Our study identifies within-species phylogenetic diversity for strains of 27 species that explain inter-individual differences in T2D risk, such as Eubacterium rectale. In some cases, these were explained by strain-specific gene carriage, including loci involved in various mechanisms of horizontal gene transfer and novel biological processes underlying metabolic risk, for example, quorum sensing. In summary, our study provides robust cross-cohort microbial signatures in a strain-resolved manner and offers new mechanistic insights into T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metagenoma , Filogenia , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/genética , Humanos , Microbioma Gastrointestinal/genética , Metagenoma/genética , Estudios de Cohortes , Masculino , Persona de Mediana Edad , Femenino , China/epidemiología , Disbiosis/microbiología , Estados Unidos/epidemiología , Israel/epidemiología , Europa (Continente)/epidemiología
16.
Bioinformatics ; 40(6)2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38870525

RESUMEN

MOTIVATION: Phylogenetic placement of a query sequence on a backbone tree is increasingly used across biomedical sciences to identify the content of a sample from its DNA content. The accuracy of such analyses depends on the density of the backbone tree, making it crucial that placement methods scale to very large trees. Moreover, a new paradigm has been recently proposed to place sequences on the species tree using single-gene data. The goal is to better characterize the samples and to enable combined analyses of marker-gene (e.g., 16S rRNA gene amplicon) and genome-wide data. The recent method DEPP enables performing such analyses using metric learning. However, metric learning is hampered by a need to compute and save a quadratically growing matrix of pairwise distances during training. Thus, the training phase of DEPP does not scale to more than roughly 10 000 backbone species, a problem that we faced when trying to use our recently released Greengenes2 (GG2) reference tree containing 331 270 species. RESULTS: This paper explores divide-and-conquer for training ensembles of DEPP models, culminating in a method called C-DEPP. While divide-and-conquer has been extensively used in phylogenetics, applying divide-and-conquer to data-hungry machine-learning methods needs nuance. C-DEPP uses carefully crafted techniques to enable quasi-linear scaling while maintaining accuracy. C-DEPP enables placing 20 million 16S fragments on the GG2 reference tree in 41 h of computation. AVAILABILITY AND IMPLEMENTATION: The dataset and C-DEPP software are freely available at https://github.com/yueyujiang/dataset_cdepp/.


Asunto(s)
Filogenia , Algoritmos , ARN Ribosómico 16S/genética , Programas Informáticos , Biología Computacional/métodos , Aprendizaje Automático , Análisis de Secuencia de ADN/métodos
17.
Lancet Microbe ; 5(9): 100864, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38909617

RESUMEN

BACKGROUND: Microbiota alterations are common in patients hospitalised for severe infections, and preclinical models have shown that anaerobic butyrate-producing gut bacteria protect against systemic infections. However, the relationship between microbiota disruptions and increased susceptibility to severe infections in humans remains unclear. We investigated the relationship between gut microbiota and the risk of future infection-related hospitalisation in two large population-based cohorts. METHODS: In this observational microbiome study, gut microbiota were characterised using 16S rRNA gene sequencing in independent population-based cohorts from the Netherlands (HELIUS study; derivation cohort) and Finland (FINRISK 2002 study; validation cohort). HELIUS was conducted in Amsterdam, Netherlands, and included adults (aged 18-70 years at inclusion) who were randomly sampled from the municipality register of Amsterdam. FINRISK 2002 was conducted in six regions in Finland and is a population survey that included a random sample of adults (aged 25-74 years). In both cohorts, participants completed questionnaires, underwent a physical examination, and provided a faecal sample at inclusion (Jan 3, 2013, to Nov 27, 2015, for HELIUS participants and Jan 21 to April 19, 2002, for FINRISK participants. For inclusion in our study, a faecal sample needed to be provided and successfully sequenced, and national registry data needed to be available. Primary predictor variables were microbiota composition, diversity, and relative abundance of butyrate-producing bacteria. Our primary outcome was hospitalisation or mortality due to any infectious disease during 5-7-year follow-up after faecal sample collection, based on national registry data. We examined associations between microbiota and infection risk using microbial ecology and Cox proportional hazards. FINDINGS: We profiled gut microbiota from 10 699 participants (4248 [39·7%] from the derivation cohort and 6451 [60·3%] from the validation cohort). 602 (5·6%) participants (152 [3·6%] from the derivation cohort; 450 [7·0%] from the validation cohort) were hospitalised or died due to infections during follow-up. Gut microbiota composition of these participants differed from those without hospitalisation for infections (derivation p=0·041; validation p=0·0002). Specifically, higher relative abundance of butyrate-producing bacteria was associated with a reduced risk of hospitalisation for infections (derivation cohort cause-specific hazard ratio 0·75 [95% CI 0·60-0·94] per 10% increase in butyrate producers, p=0·013; validation cohort 0·86 [0·77-0·96] per 10% increase, p=0·0077). These associations remained unchanged following adjustment for demographics, lifestyle, antibiotic exposure, and comorbidities. INTERPRETATION: Gut microbiota composition, specifically colonisation with butyrate-producing bacteria, was associated with protection against hospitalisation for infectious diseases in the general population across two independent European cohorts. Further studies should investigate whether modulation of the microbiome can reduce the risk of severe infections. FUNDING: Amsterdam UMC, Porticus, National Institutes of Health, Netherlands Organisation for Health Research and Development (ZonMw), and Leducq Foundation.


Asunto(s)
Bacterias , Butiratos , Microbioma Gastrointestinal , Hospitalización , ARN Ribosómico 16S , Humanos , Persona de Mediana Edad , Adulto , Hospitalización/estadística & datos numéricos , Masculino , Femenino , Microbioma Gastrointestinal/fisiología , Anciano , Finlandia/epidemiología , Butiratos/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Países Bajos/epidemiología , Adulto Joven , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Heces/microbiología , Adolescente , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/epidemiología , Estudios de Cohortes , Factores de Riesgo
19.
mSystems ; 9(7): e0051624, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38934546

RESUMEN

Bacteroides fragilis is a Gram-negative commensal bacterium commonly found in the human colon, which differentiates into two genomospecies termed divisions I and II. Through a comprehensive collection of 694 B. fragilis whole genome sequences, we identify novel features distinguishing these divisions. Our study reveals a distinct geographic distribution with division I strains predominantly found in North America and division II strains in Asia. Additionally, division II strains are more frequently associated with bloodstream infections, suggesting a distinct pathogenic potential. We report differences between the two divisions in gene abundance related to metabolism, virulence, stress response, and colonization strategies. Notably, division II strains harbor more antimicrobial resistance (AMR) genes than division I strains. These findings offer new insights into the functional roles of division I and II strains, indicating specialized niches within the intestine and potential pathogenic roles in extraintestinal sites. IMPORTANCE: Understanding the distinct functions of microbial species in the gut microbiome is crucial for deciphering their impact on human health. Classifying division II strains as Bacteroides fragilis can lead to erroneous associations, as researchers may mistakenly attribute characteristics observed in division II strains to the more extensively studied division I B. fragilis. Our findings underscore the necessity of recognizing these divisions as separate species with distinct functions. We unveil new findings of differential gene prevalence between division I and II strains in genes associated with intestinal colonization and survival strategies, potentially influencing their role as gut commensals and their pathogenicity in extraintestinal sites. Despite the significant niche overlap and colonization patterns between these groups, our study highlights the complex dynamics that govern strain distribution and behavior, emphasizing the need for a nuanced understanding of these microorganisms.


Asunto(s)
Bacteroides fragilis , Variación Genética , Genoma Bacteriano , Bacteroides fragilis/genética , Bacteroides fragilis/patogenicidad , Bacteroides fragilis/aislamiento & purificación , Humanos , Genoma Bacteriano/genética , Microbioma Gastrointestinal/genética , Filogenia , Infecciones por Bacteroides/microbiología , Secuenciación Completa del Genoma , Farmacorresistencia Bacteriana/genética
20.
Alzheimers Res Ther ; 16(1): 122, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849944

RESUMEN

BACKGROUND: Evidence links lifestyle factors with Alzheimer's disease (AD). We report the first randomized, controlled clinical trial to determine if intensive lifestyle changes may beneficially affect the progression of mild cognitive impairment (MCI) or early dementia due to AD. METHODS: A 1:1 multicenter randomized controlled phase 2 trial, ages 45-90 with MCI or early dementia due to AD and a Montreal Cognitive Assessment (MoCA) score of 18 or higher. The primary outcome measures were changes in cognition and function tests: Clinical Global Impression of Change (CGIC), Alzheimer's Disease Assessment Scale (ADAS-Cog), Clinical Dementia Rating-Sum of Boxes (CDR-SB), and Clinical Dementia Rating Global (CDR-G) after 20 weeks of an intensive multidomain lifestyle intervention compared to a wait-list usual care control group. ADAS-Cog, CDR-SB, and CDR-Global scales were compared using a Mann-Whitney-Wilcoxon rank-sum test, and CGIC was compared using Fisher's exact test. Secondary outcomes included plasma Aß42/40 ratio, other biomarkers, and correlating lifestyle with the degree of change in these measures. RESULTS: Fifty-one AD patients enrolled, mean age 73.5. No significant differences in any measures at baseline. Only two patients withdrew. All patients had plasma Aß42/40 ratios <0.0672 at baseline, strongly supporting AD diagnosis. After 20 weeks, significant between-group differences in the CGIC (p= 0.001), CDR-SB (p= 0.032), and CDR Global (p= 0.037) tests and borderline significance in the ADAS-Cog test (p= 0.053). CGIC, CDR Global, and ADAS-Cog showed improvement in cognition and function and CDR-SB showed significantly less progression, compared to the control group which worsened in all four measures. Aß42/40 ratio increased in the intervention group and decreased in the control group (p = 0.003). There was a significant correlation between lifestyle and both cognitive function and the plasma Aß42/40 ratio. The microbiome improved only in the intervention group (p <0.0001). CONCLUSIONS: Comprehensive lifestyle changes may significantly improve cognition and function after 20 weeks in many patients with MCI or early dementia due to AD. TRIAL REGISTRATION: Approved by Western Institutional Review Board on 12/31/2017 (#20172897) and by Institutional Review Boards of all sites. This study was registered retrospectively with clinicaltrials.gov on October 8, 2020 (NCT04606420, ID: 20172897).


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Progresión de la Enfermedad , Estilo de Vida , Humanos , Masculino , Femenino , Anciano , Enfermedad de Alzheimer/psicología , Anciano de 80 o más Años , Persona de Mediana Edad , Demencia/psicología , Péptidos beta-Amiloides/sangre , Pruebas Neuropsicológicas , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA