Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 13(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440753

RESUMEN

Existing three-dimensional modeling approaches to single-screw extrusion can be classified according to the process sections. The discrete element method (DEM) allows describing solids transport in the feed section. The melt flow in the melt section can be calculated by means of computational fluid dynamics (CFD). However, the current state of the art only allows a separate consideration of the respective sections. A joint examination of the process sections still remains challenging. In this study, a novel modeling approach is presented, allowing a joint consideration of solids and melt transport and, beyond that, the formation of melt. For this purpose, the phase transition from the solid to liquid states is modeled for the first time within the framework CFDEMCoupling®, combining CFD and DEM by a novel melting model implemented in this study. In addition, a melting apparatus for the validation of the novel melting model is set up and put into operation. CFD-DEM simulations are carried out in order to calculate the melting rate and are compared to experimental results. A good agreement between the simulation and experimental results is found. From the findings, it can be assumed that the CFD-DEM simulation of single-screw extruder with a joint consideration of the feed and melt section is feasible.

2.
Appl Phys Lett ; 92(15): 151101-1511013, 2008 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-19479046

RESUMEN

We report an optical actuation mechanism, floating electrode optoelectronic tweezers (FEOET). FEOET enables light-driven transport of aqueous droplets immersed in electrically insulating oil on a featureless photoconductive glass layer with direct optical images. We demonstrate that a 681 mum de-ionized water droplet immersed in corn oil medium is actuated by a 3.21 muW laser beam with an average intensity as low as 4.08 muWmm(2) at a maximum speed of 85.1 mums on a FEOET device. FEOET provides a promising platform for massively parallel droplet manipulation with optical images on low cost, silicon-coated glass. The FEOET device structure, fabrication, working principle, numerical simulations, and operational results are presented in this letter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA