Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(35): 37094-37104, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39246464

RESUMEN

CO2 injection in subterranean reservoirs for storage, oil recovery, or both is challenging because of its very high mobility. Using a CO2 foam or emulsion is a way to remedy this problem by increasing CO2's apparent viscosity. However, the generation of the foam and its propagation in porous media present several issues that have to be overcome for this process to be economically realistic in practice. For example, it may take time, i.e., a number of pore volumes to be injected, before the foam is created. It is the objective of this Article to investigate these issues thoroughly and to identify the mechanisms underlying them by looking at the effects of various parameters. It is found that surfactant adsorption on the surface of the rock is an important factor involved in the delay of foam formation, but this may not explain all of the results. The nature and morphology of the porous medium may be, in some cases, the dominant factors for foam generation and propagation. From an understanding of the origin of the encountered problem, relevant mitigation strategies are envisioned and evaluated. It is found, for example, that when appropriately formulated and injected with the proper process, foam or emulsion generation is strongly accelerated, which very significantly shortens the delay for achieving CO2 storage.

2.
Microbiol Resour Announc ; 13(9): e0053824, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39162467

RESUMEN

We report a genome of CpGV from the bioresource collection of the Federal Research Center of Biological Plant Protection "State Collection of Entomoacariphages and Microorganisms." Its sequence is 123,862 bp. The genome under study demonstrates a degree of similarity of more than 99% with reference NC_002816 from the NCBI RefSeq database.

3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000263

RESUMEN

Cydia pomonella granulovirus is a natural pathogen for Cydia pomonella that is used as a biocontrol agent of insect populations. The study of granulovirus virulence is of particular interest since the development of resistance in natural populations of C. pomonella has been observed during the long-term use of the Mexican isolate CpGV. In our study, we present the genomes of 18 CpGV strains endemic to southern Russia and from Kazakhstan, as well as a strain included in the commercial preparation "Madex Twin", which were sequenced and analyzed. We performed comparative genomic analysis using several tools. From comparisons at the level of genes and protein products that are involved in the infection process of virosis, synonymous and missense substitution variants have been identified. The average nucleotide identity has demonstrated a high similarity with other granulovirus genomes of different geographic origins. Whole-genome alignment of the 18 genomes relative to the reference revealed regions of low similarity. Analysis of gene repertoire variation has shown that BZR GV 4, BZR GV 6, and BZR GV L-7 strains have been the closest in gene content to the commercial "Madex Twin" strain. We have confirmed two deletions using read depth coverage data in regions lacking genes shown by homology analysis for granuloviruses BZR GV L-4 and BZR GV L-6; however, they are not related to the known genes causing viral pathogenicity. Thus, we have isolated novel CpGV strains and analyzed their potential as strains producing highly effective bioinsecticides against C. pomonella.


Asunto(s)
Genoma Viral , Granulovirus , Mariposas Nocturnas , Filogenia , Granulovirus/genética , Granulovirus/patogenicidad , Granulovirus/clasificación , Animales , Mariposas Nocturnas/virología , Anotación de Secuencia Molecular
4.
Plants (Basel) ; 13(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891261

RESUMEN

Wheat heading time is primarily governed by two loci: VRN-1 (response to vernalization) and PPD-1 (response to photoperiod). Five sets of near-isogenic lines (NILs) were studied with the aim of investigating the effect of the aforementioned genes on wheat vegetative period duration and 14 yield-related traits. Every NIL was sown in the hydroponic greenhouse of the Institute of Cytology and Genetics, SB RAS. To assess their allelic composition at the VRN-1 and PPD-1 loci, molecular markers were used. It was shown that HT in plants with the Vrn-A1vrn-B1vrn-D1 genotype was reduced by 29 and 21 days (p < 0.001) in comparison to HT in plants with the vrn-A1Vrn-B1vrn-D1 and the vrn-A1vrn-B1Vrn-D1 genotypes, respectively. In our study, we noticed a decrease in spike length as well as spikelet number per spike parameter for some NIL carriers of the Vrn-A1a allele in comparison to carriers of the Vrn-B1 allele. PCA revealed three first principal components (PC), together explaining more than 70% of the data variance. Among the studied genetic traits, the Vrn-A1a and Ppd-D1a alleles showed significant correlations with PCs. Regarding genetic components, significant correlations were calculated between PC3 and Ppd-B1a (-0.26, p < 0.05) and Vrn-B1 (0.57, p < 0.05) alleles. Thus, the presence of the Vrn-A1a allele affects heading time, while Ppd-D1a is associated with plant height reduction.

5.
ACS Omega ; 9(7): 8320-8332, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405538

RESUMEN

We study foam production and destabilization through a flow-focusing geometry, namely a single pore of rectangular cross-section, by coinjecting gas and liquid at constant pressure, Pg, and constant flow rate, Qw. We observe that bubble production results from a Rayleigh-Plateau destabilization of the internal gas thread that occurs at the pore neck when its width becomes comparable to the height of the rectangular-section channel. Using a simple model and numerical approach, we (i) predict the shape of the gas jet and its stability range as a function of flow parameters and device geometry, which we successfully compare with our experimental results, and (ii) demonstrate the existence of a critical local pressure drop at the pore neck that determines whether or not a stable gas flow can form. We thus show that bubble foam generation exhibits hysteretic behavior due to hydrodynamic feedback and demonstrate that there is a maximum bubble volume fraction that the generated foam cannot exceed, the value of which is fixed by the geometry. Our results suggest that the foam collapse observed in porous media when the fractional gas flow becomes too large may result from hydrodynamic feedback inhibiting foam generation and not necessarily from coalescence between bubbles, as is usually claimed.

6.
ACS Omega ; 9(6): 6932-6944, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38371840

RESUMEN

Evaluating the wettability state of reservoir rocks is key for understanding and optimizing waterflooding and improved oil recovery techniques that imply the use of low-salinity water. Aside from established petrophysical techniques, such as Amott imbibition tests, we evaluated the Washburn capillary rise method as a low-cost, easy-to-implement, and rapid screening tool for probing the wettability state of rock samples. The well-known limitations of this method are discussed and circumvented. We show that measuring the capillary rise of two liquids -brine and n-octane-is required to assess the evolution of the wettability state of a material induced by various treatments. The wettability state is quantified by the adhesion tension of brine to the solid. The higher the adhesion tension of brine, the more water-wet the sample. An increase in oil-wetness is observed when the sample is contacted with a crude oil or its released waters; an increase in water-wetness is obtained by postcontacting the oil-wet sample with low-salinity brine or surfactant solutions. The Washburn capillary rise is revealed to be a robust method for screening wettability alteration. With a typical duration of 1-10 min, it allows reproducibility check and screening of a wide range of brine compositions in a reasonable time frame. Therefore, it is a relevant tool to identify the most favorable brine compositions to be tested afterward with more time-consuming techniques, such as Amott tests and corefloods.

7.
Biology (Basel) ; 12(10)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37887048

RESUMEN

Translation efficiency modulates gene expression in prokaryotes. The comparative analysis of translation elongation efficiency characteristics of Ralstonia genus bacteria genomes revealed that these characteristics diverge in accordance with the phylogeny of Ralstonia. The first branch of this genus is a group of bacteria commonly found in moist environments such as soil and water that includes the species R. mannitolilytica, R. insidiosa, and R. pickettii, which are also described as nosocomial infection pathogens. In contrast, the second branch is plant pathogenic bacteria consisting of R. solanacearum, R. pseudosolanacearum, and R. syzygii. We found that the soil Ralstonia have a significantly lower number and energy of potential secondary structures in mRNA and an increased role of codon usage bias in the optimization of highly expressed genes' translation elongation efficiency, not only compared to phytopathogenic Ralstonia but also to Cupriavidus necator, which is closely related to the Ralstonia genus. The observed alterations in translation elongation efficiency of orthologous genes are also reflected in the difference of potentially highly expressed gene' sets' content among Ralstonia branches with different lifestyles. Analysis of translation elongation efficiency characteristics can be considered a promising approach for studying complex mechanisms that determine the evolution and adaptation of bacteria in various environments.

8.
Biology (Basel) ; 12(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36671807

RESUMEN

We propose the trait-based method for quantifying the activity of functional groups in the human gut microbiome based on metatranscriptomic data. It allows one to assess structural changes in the microbial community comprised of the following functional groups: butyrate-producers, acetogens, sulfate-reducers, and mucin-decomposing bacteria. It is another way to perform a functional analysis of metatranscriptomic data by focusing on the ecological level of the community under study. To develop the method, we used published data obtained in a carefully controlled environment and from a synthetic microbial community, where the problem of ambiguity between functionality and taxonomy is absent. The developed method was validated using RNA-seq data and sequencing data of the 16S rRNA amplicon on a simplified community. Consequently, the successful verification provides prospects for the application of this method for analyzing natural communities of the human intestinal microbiota.

9.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36499640

RESUMEN

A number of methods for extracting the DNA of maternally inherited obligate intracellular bacteria Wolbachia from an insect host and its subsequent purification have been described in previous scholarship. As Wolbachia is present in the hosts' organisms in rather low quantities, these techniques used to be quite labor-intensive. For this paper, we analyzed them in detail, searched for a possibility to simplify and accelerate the protocol, and proposed an easy and effective method for isolating Wolbachia DNA from Drosophila melanogaster with a purity sufficient for genomic sequencing. Our method involves the centrifugation of homogenized flies or just their ovaries, as the most Wolbachia-enriched tissue, followed by the filtration of homogenate and extraction of DNA using a modified version of the Livak buffer protocol. The proportion of Wolbachia DNA in the total DNA was quantified based on the results of sequencing with the use of the Illumina MiSeq platform and a pipeline of bioinformatic analysis. For the two analyzed D. melanogaster lines infected with two different Wolbachia strains, the proportion was at least 68 and 94%, respectively.


Asunto(s)
Wolbachia , Animales , Wolbachia/genética , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Análisis de Secuencia de ADN , Mapeo Cromosómico , ADN , Simbiosis
10.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36555851

RESUMEN

The maternally transmitted endocellular bacteria Wolbachia is a well-known symbiont of insects, demonstrating both negative and positive effects on host fitness. The previously found Wolbachia strain wMelPlus is characterized by a positive effect on the stress-resistance of its host Drosophila melanogaster, under heat stress conditions. This investigation is dedicated to studying the genomic underpinnings of such an effect. We sequenced two closely related Wolbachia strains, wMelPlus and wMelCS112, assembled their complete genomes, and performed comparative genomic analysis engaging available Wolbachia genomes from the wMel and wMelCS groups. Despite the two strains under study sharing very close gene-composition, we discovered a large (>1/6 of total genome) chromosomal inversion in wMelPlus, spanning through the region that includes the area of the inversion earlier found in the wMel group of Wolbachia genotypes. A number of genes in unique inversion blocks of wMelPlus were identified that might be involved in the induction of a stress-resistant phenotype in the host. We hypothesize that such an inversion could rearrange established genetic regulatory-networks, causing the observed effects of such a complex fly phenotype as a modulation of heat stress resistance. Based on our findings, we propose that wMelPlus be distinguished as a separate genotype of the wMelCS group, named wMelCS3.


Asunto(s)
Drosophila melanogaster , Wolbachia , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Wolbachia/genética , Inversión Cromosómica , Genotipo , Respuesta al Choque Térmico/genética , Simbiosis
11.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36233299

RESUMEN

Protein abundance is crucial for the majority of genetically regulated cell functions to act properly in prokaryotic organisms. Therefore, developing bioinformatic methods for assessing the efficiency of different stages of gene expression is of great importance for predicting the actual protein abundance. One of these steps is the evaluation of translation elongation efficiency based on mRNA sequence features, such as codon usage bias and mRNA secondary structure properties. In this study, we have evaluated correlation coefficients between experimentally measured protein abundance and predicted elongation efficiency characteristics for 26 prokaryotes, including non-model organisms, belonging to diverse taxonomic groups The algorithm for assessing elongation efficiency takes into account not only codon bias, but also number and energy of secondary structures in mRNA if those demonstrate an impact on predicted elongation efficiency of the ribosomal protein genes. The results show that, for a number of organisms, secondary structures are a better predictor of protein abundance than codon usage bias. The bioinformatic analysis has revealed several factors associated with the value of the correlation coefficient. The first factor is the elongation efficiency optimization type-the organisms whose genomes are optimized for codon usage only have significantly higher correlation coefficients. The second factor is taxonomical identity-bacteria that belong to the class Bacilli tend to have higher correlation coefficients among the analyzed set. The third is growth rate, which is shown to be higher for the organisms with higher correlation coefficients between protein abundance and predicted translation elongation efficiency. The obtained results can be useful for further improvement of methods for protein abundance prediction.


Asunto(s)
Biología Computacional , Biosíntesis de Proteínas , Codón/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo
12.
J Pers Med ; 12(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35055368

RESUMEN

In this study, we collected and systemized diverse information related to depressive and anxiety disorders as the first step on the way to investigate the associations between molecular genetics, electrophysiological, behavioral, and psychological characteristics of people. Keeping that in mind, we developed an internet resource including a database and tools for primary presentation of the collected data of genetic factors, the results of electroencephalography (EEG) tests, and psychological questionnaires. The sample of our study was 1010 people from different regions of Russia. We created the integrated ICBrainDB database that enables users to easily access, download, and further process information about individual behavioral characteristics and psychophysiological responses along with inherited trait data. The data obtained can be useful in training neural networks and in machine learning construction processes in Big Data analysis. We believe that the existence of such a resource will play an important role in the further search for associations of genetic factors and EEG markers of depression.

13.
Biology (Basel) ; 10(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34681118

RESUMEN

Motility is a key adaptation factor in scarce marine environments inhabited by bacteria. The question of how a capacity for adaptive migrations influences the success of a microbial population in various conditions is a challenge addressed in this study. We employed the agent-based model of competition of motile and sedentary microbial populations in a confined aquatic environment supplied with a periodic batch nutrient source to assess the fitness of both. Such factors as nutrient concentration in a batch, batch period, mortality type and energetic costs of migration were considered to determine the conditions favouring different strategies: Nomad of a motile population and Settler of a sedentary one. The modelling results demonstrate that dynamic and nutrient-scarce environments favour motile populations, whereas nutrient-rich and stagnant environments promote sedentary microorganisms. Energetic costs of migration determine whether or not the Nomad strategy of the motile population is successful, though it also depends on such conditions as nutrient availability. Even without penalties for migration, under certain conditions, the sedentary Settler population dominates in the ecosystem. It is achieved by decreasing the local nutrient availability near the nutrient source, as motile populations relying on a local optimizing strategy tend to follow benign conditions and fail, enduring stress associated with crossing the valleys of suboptimal nutrient availability.

14.
Int J Mol Sci ; 22(10)2021 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-34065644

RESUMEN

Autism spectrum disorder (ASD) is characterized by uncommon genetic heterogeneity and a high heritability concurrently. Most autoimmune disorders (AID), similarly to ASD, are characterized by impressive genetic heterogeneity and heritability. We conducted gene-set analyses and revealed that 584 out of 992 genes (59%) included in a new release of the SFARI Gene database and 439 out of 871 AID-associated genes (50%) could be attributed to one of four groups: 1. FMRP (fragile X mental retardation protein) target genes, 2. mTOR signaling network genes, 3. mTOR-modulated genes, and 4. vitamin D3-sensitive genes. With the exception of FMRP targets, which are obviously associated with the direct involvement of local translation disturbance in the pathological mechanisms of ASD, the remaining categories are represented among AID genes in a very similar percentage as among ASD predisposition genes. Thus, mTOR signaling pathway genes make up 4% of ASD and 3% of AID genes, mTOR-modulated genes-31% of both ASD and AID genes, and vitamin D-sensitive genes-20% of ASD and 23% of AID genes. The network analysis revealed 3124 interactions between 528 out of 729 AID genes for the 0.7 cutoff, so the great majority (up to 67%) of AID genes are related to the mTOR signaling pathway directly or indirectly. Our present research and available published data allow us to hypothesize that both a certain part of ASD and AID comprise a connected set of disorders sharing a common aberrant pathway (mTOR signaling) rather than a vast set of different disorders. Furthermore, an immune subtype of the autism spectrum might be a specific type of autoimmune disorder with an early manifestation of a unique set of predominantly behavioral symptoms.


Asunto(s)
Enfermedades Autoinmunes/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Trastorno del Espectro Autista/genética , Colecalciferol/genética , Bases de Datos Genéticas , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Humanos
15.
Int J Mol Sci ; 20(24)2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31847491

RESUMEN

Autism spectrum disorder (ASD) has a strong and complex genetic component with an estimate of more than 1000 genes implicated cataloged in SFARI (Simon's Foundation Autism Research Initiative) gene database. A significant part of both syndromic and idiopathic autism cases can be attributed to disorders caused by the mechanistic target of rapamycin (mTOR)-dependent translation deregulation. We conducted gene-set analyses and revealed that 606 out of 1053 genes (58%) included in the SFARI Gene database and 179 out of 281 genes (64%) included in the first three categories of the database ("high confidence", "strong candidate", and "suggestive evidence") could be attributed to one of the four groups: 1. FMRP (fragile X mental retardation protein) target genes, 2. mTOR signaling network genes, 3. mTOR-modulated genes, 4. vitamin D3 sensitive genes. The additional gene network analysis revealed 43 new genes and 127 new interactions, so in the whole 222 out of 281 (79%) high scored genes from SFARI Gene database were connected with mTOR signaling activity and/or dependent on vitamin D3 availability directly or indirectly. We hypothesized that genetic and/or environment mTOR hyperactivation, including provocation by vitamin D deficiency, might be a common mechanism controlling the expressivity of most autism predisposition genes and even core symptoms of autism.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Vitamina D/genética , Redes Reguladoras de Genes/genética , Humanos
16.
Bioinformatics ; 33(6): 923-925, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28039164

RESUMEN

Motivation: Protein synthesis is not a straight forward process and one gene locus can produce many isoforms, for example, by starting mRNA translation from alternative start sites. altORF evaluator (altORFev) predicts alternative open reading frames within eukaryotic mRNA translated by a linear scanning mechanism and its modifications (leaky scanning and reinitiation). The program reveals the efficiently translated altORFs recognized by the majority of 40S ribosomal subunits landing on the 5'-end of an mRNA. This information aids to reveal the functions of eukaryotic genes connected to synthesis of either unknown isoforms of annotated proteins or new unrelated polypeptides. Availability and Implementation: altORFev is available at http://www.bionet.nsc.ru/AUGWeb/ and has been developed in Java 1.8 using the BioJava library; and the Vaadin framework to produce the web service. Contact: ak@bionet.nsc.ru.


Asunto(s)
Genómica/métodos , Sistemas de Lectura Abierta , ARN Mensajero/metabolismo , Programas Informáticos , Eucariontes/genética , Biosíntesis de Proteínas , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Análisis de Secuencia de ARN/métodos
18.
BMC Microbiol ; 16 Suppl 1: 10, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26823184

RESUMEN

BACKGROUND: Bacteriophages are known to be one of the driving forces of bacterial evolution. Besides promoting horizontal transfer of genes between cells, they may induce directional selection of cells (for instance, according to more or less resistance to phage infection). Switching between lysogenic and lytic pathways results in various types of (co)evolution in host-phage systems. Spatial (more generally, ecological) organization of the living environment is another factor affecting evolution. In this study, we have simulated and analyzed a series of computer models of microbial communities evolving in spatially distributed environments under the pressure of phage infection. RESULTS: We modeled evolving microbial communities living in spatially distributed flowing environments. Non-specific nutrient supplied in the only spatial direction, resulting in its non-uniform distribution in environment. We varied the time and the location of initial phage infestation of cells as well as switched chemotaxis on and off. Simulations were performed with the Haploid evolutionary constructor software ( http://evol-constructor.bionet.nsc.ru/ ). CONCLUSION: Simulations have shown that the spatial location of initial phage invasion may lead to different evolutionary scenarios. Phage infection decreases the speciation rate by more than one order as far as intensified selection blocks the origin of novel viable populations/species, which could carve out potential ecological niches. The dependence of speciation rate on the invasion node location varied on the time of invasion. Speciation rate was found to be lower when the phage invaded fully formed community of sedentary cells (at middle and late times) at the species-rich regions. This is especially noticeable in the case of late-time invasion. Our simulation study has shown that phage infection affects evolution of microbial community slowing down speciation and stabilizing the system as a whole. This influencing varied in its efficiency depending on spatially-ecological factors as well as community state at the moment of phage invasion.


Asunto(s)
Bacterias/virología , Bacteriófagos/fisiología , Evolución Biológica , Bacterias/genética , Bacteriófagos/genética , Ecosistema , Interacciones Huésped-Patógeno , Modelos Biológicos
19.
BMC Evol Biol ; 15 Suppl 1: S3, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25708911

RESUMEN

BACKGROUND: Multiscale approaches for integrating submodels of various levels of biological organization into a single model became the major tool of systems biology. In this paper, we have constructed and simulated a set of multiscale models of spatially distributed microbial communities and study an influence of unevenly distributed environmental factors on the genetic diversity and evolution of the community members. RESULTS: Haploid Evolutionary Constructor software http://evol-constructor.bionet.nsc.ru/ was expanded by adding the tool for the spatial modeling of a microbial community (1D, 2D and 3D versions). A set of the models of spatially distributed communities was built to demonstrate that the spatial distribution of cells affects both intensity of selection and evolution rate. CONCLUSION: In spatially heterogeneous communities, the change in the direction of the environmental flow might be reflected in local irregular population dynamics, while the genetic structure of populations (frequencies of the alleles) remains stable. Furthermore, in spatially heterogeneous communities, the chemotaxis might dramatically affect the evolution of community members.


Asunto(s)
Bacterias/genética , Evolución Biológica , Modelos Genéticos , Programas Informáticos , Ecosistema , Variación Genética , Haploidia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA