Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Crit Rev Biotechnol ; : 1-29, 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38105487

RESUMEN

Microalgae have long been regarded as a promising solution for biological carbon abatement from the power industry, offering renewable biomass without competing for land or water resources used for food crops. In this study, we extensively examined the application of photosynthetic microorganisms for closing carbon, nitrogen, and micronutrient loops in the power industry. Subsequently, we explored the bottom-up integration of algal biorefineries into power industry waste streams for increased economic benefits and reduced environmental impacts. Analysis of the available data indicated that microalgae integration with the power industry is primarily performed using flue-gas-assisted cultivation. This approach allows for carbon sequestration typically below one gram per liter per day, too low to significantly impact carbon abatement at achievable scales of microalgae cultivation. Alternative approaches are also being explored. For example, soluble bicarbonate platforms allow for higher biomass productivity and temporary carbon storage. Meanwhile, the use of ashes and waste heat and thermophilic strains can result in lower cultivation costs and better control of cultivation conditions. These approaches offer further incremental improvement to microalgae-based carbon abatement systems in the power industry but are unlikely to be an umbrella solution for carbon reduction. Consequently, in the near term, microalgae-based carbon valorization systems are likely to be limited to niche applications involving the synthesis of high-value products. For microalgae to truly transform carbon abatement processes radical improvements in both biology and engineering approaches are urgently needed.

3.
Front Microbiol ; 13: 959043, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958137

RESUMEN

The biotechnologically important and naturally transformable cyanobacterium, Synechococcus elongatus PCC 7942, possesses multiple genome copies irrespective of its growth rate or condition. Hence, segregating mutations across all genome copies typically takes several weeks. In this study, Synechococcus 7942 cultivation on a solid growth medium was optimised using different concentrations of agar, the addition of antioxidants, and overexpression of the catalase gene to facilitate the rapid acquisition of colonies and fully segregated lines. Synechococcus 7942 was grown at different temperatures and nutritional conditions. The miniploid cells were identified using flow cytometry and fluorimetry. The natural transformation was carried out using miniploid cells and validated with PCR and high performance liquid chromatography (HPLC). We identified that 0.35% agar concentration and 200 IU of catalase could improve the growth of Synechococcus 7942 on a solid growth medium. Furthermore, overexpression of a catalase gene enhanced the growth rate and supported diluted culture to grow on a solid medium. Our results reveal that high temperature and phosphate-depleted cells contain the lowest genome copies (2.4 ± 0.3 and 1.9 ± 0.2) and showed the potential to rapidly produce fully segregated mutants. In addition, higher antibiotic concentrations improve the selection of homozygous transformants while maintaining similar genome copies at a constant temperature. Based on our observation, we have an improved cultivation and natural transformation protocol for Synechococcus 7942 by optimising solid media culturing, generating low-ploidy cells that ultimately reduced the time required for the complete segregation of engineered lines.

4.
Front Microbiol ; 13: 876272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602029

RESUMEN

Cyanobacteria evolved an inorganic carbon-concentrating mechanism (CCM) to perform effective oxygenic photosynthesis and prevent photorespiratory carbon losses. This process facilitates the acclimation of cyanobacteria to various habitats, particularly in CO2-limited environments. To date, there is limited information on the CCM of thermophilic cyanobacteria whose habitats limit the solubility of inorganic carbon. Here, genome-based approaches were used to identify the molecular components of CCM in 17 well-described thermophilic cyanobacteria. These cyanobacteria were from the genus Leptodesmis, Leptolyngbya, Leptothermofonsia, Thermoleptolyngbya, Thermostichus, and Thermosynechococcus. All the strains belong to ß-cyanobacteria based on their ß-carboxysome shell proteins with 1B form of Rubisco. The diversity in the Ci uptake systems and carboxysome composition of these thermophiles were analyzed based on their genomic information. For Ci uptake systems, two CO2 uptake systems (NDH-13 and NDH-14) and BicA for HCO3 - transport were present in all the thermophilic cyanobacteria, while most strains did not have the Na+/HCO3 - Sbt symporter and HCO3 - transporter BCT1 were absent in four strains. As for carboxysome, the ß-carboxysomal shell protein, ccmK2, was absent only in Thermoleptolyngbya strains, whereas ccmK3/K4 were absent in all Thermostichus and Thermosynechococcus strains. Besides, all Thermostichus and Thermosynechococcus strains lacked carboxysomal ß-CA, ccaA, the carbonic anhydrase activity of which may be replaced by ccmM proteins as indicated by comparative domain analysis. The genomic distribution of CCM-related genes was different among the thermophiles, suggesting probably distinct expression regulation. Overall, the comparative genomic analysis revealed distinct molecular components and organization of CCM in thermophilic cyanobacteria. These findings provided insights into the CCM components of thermophilic cyanobacteria and fundamental knowledge for further research regarding photosynthetic improvement and biomass yield of thermophilic cyanobacteria with biotechnological potentials.

5.
Plants (Basel) ; 10(10)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34685910

RESUMEN

Both low temperature and nitrogen starvation caused chlorosis of cyanobacteria. Here, in this study, for the first time, we compared the effects of low temperature, nitrogen starvation, and their combination on the photosynthesis and metabolites of a thermophilic cyanobacterium strain, Thermosynechococcus E542. Under various culture conditions, the growth rates, pigment contents, and chlorophyll fluorescence were monitored, and the composition of alkanes, lipidomes, and carbohydrates were determined. It was found that low temperature (35 °C) significantly suppressed the growth of Thermosynechococcus E542. Nitrogen starvation at 45 °C and 55 °C did not affect the growth; however, combined treatment of low temperature and nitrogen starvation led to the lowest growth rate and biomass productivity. Both low temperature and nitrogen starvation caused significantly declined contents of pigments, but they resulted in a different effect on the OJIP curves, and their combination led to the lowest pigment contents. The composition of fatty acids and alkanes was altered upon low-temperature cultivation, while nitrogen starvation caused reduced contents of all lipids. The low temperature did not affect carbohydrate contents, while nitrogen starvation greatly enhanced carbohydrate content, and their combination did not enhance carbohydrate content, but led to reduced productivity. These results revealed the influence of low temperature, nitrogen starvation, and their combined treatment for the accumulation of phycobiliproteins, lipids, and carbohydrates of a thermophilic cyanobacterium strain, Thermosynechococcus E542.

6.
Bioresour Technol ; 313: 123700, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32590305

RESUMEN

The effect of light colour and light regime on growth and production of the thermostable C-phycocyanin (PC) by the thermophilic cyanobacterium Synechococcus 6715 in the tubular photobioreactor has been analysed. The highest specific growth rate (1.918 d-1) and biomass concentration (5.11 gVS ⋅L-1) were observed under constant illumination of the red light. However, the PC concentration in volatile solids (e.g blue light 30.68 ± 0.8 mgPC⋅gVS-1 PP and 21.7 ± 1 mgPC⋅gVS-1 CI) as well as per photobioreactor unit volume (e.g red light 122.66 ± 2.28 mgPC⋅L-1 PP and 74.71 ± 8.43 mgPC⋅L-1 PP) was higher in the 16L:8D photoperiod. The obtained PC purity was higher in the case of photoperiod (≈1.5). PCC6715 lacks genes encoding phycoerythrins what suggests T1 type of pigmentation. Although changes in biomass pigmentation were not significant, the strain was able to adapt its photosystem what can be used in the optimization of PC production by application of different light colours.


Asunto(s)
Ficocianina , Synechococcus , Biomasa , Color , Fotoperiodo
7.
J Environ Manage ; 195(Pt 2): 166-173, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27397840

RESUMEN

The textile industry demands huge volumes of high quality water which converts into wastewater contaminated by wide spectrum of chemicals. Estimation of textile wastewater influence on the aquatic systems is a very important issue. Therefore, closing of the water cycle within the factories is a promising method of decreasing its environmental impact as well as operational costs. Taking both reasons into account, the aim of this work was to establish the acute toxicity of the textile wastewater before and after separate chemical, biological as well as combined chemical-biological treatment. For the first time the effects of three different combinations of chemical and biological methods were investigated. The acute toxicity analysis were evaluated using the Microtox® toxicity test. Ozonation in two reactors of working volume 1 dm3 (stirred cell) and 20 dm3 (bubble column) were tested as chemical process, while biodegradation was conducted in two, different systems - Sequence Batch Reactors (SBR; working volume 1.5 dm3) and Horizontal Continuous Flow Bioreactor (HCFB; working volume 12 dm3). The untreated wastewater had the highest toxicity (EC50 value in range: 3-6%). Ozonation caused lower reduction of the toxicity than biodegradation. In the system with SBR the best results were obtained for the biodegradation followed by the ozonation and additional biodegradation - 96% of the toxicity removal. In the second system (with HCFB) two-stage treatment (biodegradation followed by the ozonation) led to the highest toxicity reduction (98%).


Asunto(s)
Ozono , Aguas Residuales , Biodegradación Ambiental , Residuos Industriales , Industria Textil , Textiles , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/metabolismo
8.
Water Sci Technol ; 74(5): 1079-87, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27642827

RESUMEN

Following new trends we applied oxygen uptake rate (OUR) tests as well as long-term tests (in two batch bioreactors systems) in order to assess the biodegradability of textile wastewater. Effluents coming from a dyeing factory were divided into two streams which differed in inorganic and organic contaminants loads. Usefulness of the stream division was proved. Biodegradation of the low-loaded stream led to over 97% reduction of biochemical oxygen demand (BOD5) together with 80% reduction of chemical oxygen demand (COD) and total organic carbon (TOC). Most of the controlled parameter values were below the levels allowed by legislation for influents to surface water, whereas the high-loaded stream was so contaminated with recalcitrant organic compounds that despite the reduction of BOD5 by over 95%, COD, TOC, total nitrogen and total phosphorus levels exceeded permissible values. OUR tests were aimed at determination of the following kinetic parameters: maximum specific growth rate (µMax), half-saturation constant, hydrolysis constant and decay coefficient for activated sludge biomass for both types of textile wastewater studied. The values of kinetic parameters will be applied in activated sludge models used for prediction and optimisation of biological treatment of textile wastewater.


Asunto(s)
Residuos Industriales/análisis , Industria Textil , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Reactores Biológicos , Colorantes , Nitrógeno/metabolismo , Fósforo , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos
9.
Environ Technol ; 36(9-12): 1123-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25363823

RESUMEN

Digital image analysis has been intensively developed over the last two decades including its application to describe morphology of activated sludge flocs. However, only few studies concerned the variation of flocs morphology with respect to the operational conditions, particularly oxido-reductive conditions, in a full-scale wastewater treatment plant (WWTP). In this work, morphology of activated sludge flocs was monitored over one year in two different full-scale WWTPs. The main aim of this study was to find the relationship between the operational parameters and morphology of sludge flocs. Simultaneously, the variations in floc size along activated sludge chamber were studied with respect to the oxido-reductive conditions. It was found that the sludge loading rate was one of the most important operational parameters influencing floc size. It was estimated that its values higher than 0.1 kg BOD5 kg TS(-1) d(-1) contributed to the decrease in floc size. Also, the oxido-reductive conditions influenced the floc size. It was statistically proved that flocs from the anaerobic zone were usually smaller than flocs from the anoxic or aerobic zones. Distribution of floc size in a full-scale WWTP usually could be described by a log-normal model.


Asunto(s)
Floculación , Aguas del Alcantarillado , Purificación del Agua
10.
Chemosphere ; 75(2): 250-5, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19155044

RESUMEN

The anaerobic biological azo dyes reduction process was successfully applied to decolourization of the concentrates from the nanofiltration treatment of real textile effluents. The anaerobic phase was followed by aerobic oxidation aimed at the destruction of the aromatic amine released from azo dye. In the first experiment sequential batch reactor (SBR) combining both the anaerobic and aerobic phase in one unit was used. In the second one the anaerobic stage was separated from the aerobic one. The anaerobic phase fulfilled its aim (decolourization) in both systems (over 90%). In opposite, the aromatic amine was completely degraded in the aerobic reactor (two-sludge system), whereas the orthanilic acid was not degraded (during the aerobic phase) in SBR reactor. The COD reduction was also higher in the two-sludge system than in SBR.


Asunto(s)
Colorantes/metabolismo , Filtración/métodos , Textiles , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Aerobiosis , Anaerobiosis , Biodegradación Ambiental , Reactores Biológicos , Colorantes/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación
11.
Bioresour Technol ; 99(13): 5731-7, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18061439

RESUMEN

In the presented study the co-fermentation, fermentation of sewage sludge (SS) and fermentation of organic fraction of municipal solid waste (OFMSW) were compared. The goal of experiments was determination of the processes carbon balance and proposal of the simple kinetic model of anaerobic digestion. Three batch experiments with above mentioned feedstocks were conducted in large scale laboratory reactor of working volume of 40 dm(3). The cumulative biogas production for sewage sludge (180.59 dm(3)) was lower than that for co-fermentation (232 dm(3)) or OFMSW (228.34 dm(3)). During fermentation of the OFMSW an accumulation of volatile fatty acids (VFA) caused pH decrease and strongly inhibited gas production. The addition of co-substrate improved buffering capacity of fermentation broth. The suggested mathematical descriptions of carbon division in anaerobic digestion processes gave the satisfying conformity with the experimental values.


Asunto(s)
Fermentación , Metano/análisis , Eliminación de Residuos/métodos , Aguas del Alcantarillado/química , Anaerobiosis , Alimentación Animal , Animales , Carbono/análisis , Concentración de Iones de Hidrógeno , Cinética , Compuestos Orgánicos/química , Polonia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA