Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 9(9): e1001155, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21949639

RESUMEN

Germ line specification is a crucial step in the life cycle of all organisms. For sexual plant reproduction, the megaspore mother cell (MMC) is of crucial importance: it marks the first cell of the plant "germline" lineage that gets committed to undergo meiosis. One of the meiotic products, the functional megaspore, subsequently gives rise to the haploid, multicellular female gametophyte that harbours the female gametes. The MMC is formed by selection and differentiation of a single somatic, sub-epidermal cell in the ovule. The transcriptional network underlying MMC specification and differentiation is largely unknown. We provide the first transcriptome analysis of an MMC using the model plant Arabidopsis thaliana with a combination of laser-assisted microdissection and microarray hybridizations. Statistical analyses identified an over-representation of translational regulation control pathways and a significant enrichment of DEAD/DEAH-box helicases in the MMC transcriptome, paralleling important features of the animal germline. Analysis of two independent T-DNA insertion lines suggests an important role of an enriched helicase, MNEME (MEM), in MMC differentiation and the restriction of the germline fate to only one cell per ovule primordium. In heterozygous mem mutants, additional enlarged MMC-like cells, which sometimes initiate female gametophyte development, were observed at higher frequencies than in the wild type. This closely resembles the phenotype of mutants affected in the small RNA and DNA-methylation pathways important for epigenetic regulation. Importantly, the mem phenotype shows features of apospory, as female gametophytes initiate from two non-sister cells in these mutants. Moreover, in mem gametophytic nuclei, both higher order chromatin structure and the distribution of LIKE HETEROCHROMATIN PROTEIN1 were affected, indicating epigenetic perturbations. In summary, the MMC transcriptome sets the stage for future functional characterization as illustrated by the identification of MEM, a novel gene involved in the restriction of germline fate.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis , Genoma de Planta , Células Germinativas de las Plantas/metabolismo , Óvulo Vegetal/genética , ARN Helicasas , Células Madre/metabolismo , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Células Germinativas de las Plantas/citología , Hibridación in Situ , Meiosis , Microdisección , Mutagénesis Insercional , Análisis de Secuencia por Matrices de Oligonucleótidos , Óvulo Vegetal/metabolismo , Filogenia , Biosíntesis de Proteínas , ARN Helicasas/genética , ARN Helicasas/metabolismo , Células Madre/citología
2.
Development ; 138(16): 3409-20, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21752930

RESUMEN

In plants, gametes, along with accessory cells, are formed by the haploid gametophytes through a series of mitotic divisions, cell specification and differentiation events. How the cells in the female gametophyte of flowering plants differentiate into gametes (the egg and central cell) and accessory cells remains largely unknown. In a screen for mutations that affect egg cell differentiation in Arabidopsis, we identified the wyrd (wyr) mutant, which produces additional egg cells at the expense of the accessory synergids. WYR not only restricts gametic fate in the egg apparatus, but is also necessary for central cell differentiation. In addition, wyr mutants impair mitotic divisions in the male gametophyte and endosperm, and have a parental effect on embryo cytokinesis, consistent with a function of WYR in cell cycle regulation. WYR is upregulated in gametic cells and encodes a putative plant ortholog of the inner centromere protein (INCENP), which is implicated in the control of chromosome segregation and cytokinesis in yeast and animals. Our data reveal a novel developmental function of the conserved cell cycle-associated INCENP protein in plant reproduction, in particular in the regulation of egg and central cell fate and differentiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Óvulo Vegetal/citología , Óvulo Vegetal/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Regulación de la Expresión Génica de las Plantas , Mitosis , Datos de Secuencia Molecular , Mutación , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Filogenia , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA