Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38005320

RESUMEN

One of the valuable fractions of paraffinic oils is the diesel fraction, which can be used as a commercial fuel. However, the high content of alkanes of normal structure (~10-40%) in the diesel fraction leads to a deterioration in the performance characteristics of the fuel and, as a result, the inability to use the diesel fraction without additional processing in the cold season at lower temperatures, which is critical for many regions with cold winters. The process of catalytic dewaxing is one of the most promising ways to improve the low-temperature characteristics of diesel fractions. This work is devoted to studying the activity of promoted Ni, Mo, and Ni-Mo catalysts based on mesoporous aluminosilicate and pre-activated bentonite in dewaxing diesel fractions. The effect of the nature and content of promoting additives on the activity of bifunctional catalysts in the process of hydroisodewaxing of diesel fraction in a flow-type reactor in the temperature range of 260-340 °C, pressure of 2 MPa and feed space velocity of 1 h-1 was studied. It is shown that the synthesized bifunctional catalysts based on mesoporous aluminosilicate and pre-activated bentonite from the Tagan field (Ni/MAS-H-bentonite, Mo/MAS-H-bentonite, and Ni-Mo/MAS-H-bentonite) have the necessary balance of Lewis and Bronsted acid centers strengths. It allows them to selectively conduct the hydroisodewaxing process. It has been established that the use of the synthesized 5% Ni-1% Mo/MAS-H-bentonite bifunctional catalyst in the diesel fractions hydroisodewaxing process under optimal process conditions makes it possible to obtain diesel fuel with low-temperature characteristics that meet the requirements for cold climate fuels: cold filter plugging point (CFPP)-minus 33 °C, flash point in a closed cup-39 °C and pour point-minus 36 °C.

2.
Polymers (Basel) ; 12(11)2020 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-33171660

RESUMEN

Gold nanoparticles (AuNPs) were synthesized and stabilized using the one-pot method and growth seeding, through utilization of synthetic polymers, including poly(N-vinylpyrrolidone) (PVP), poly(ethylene glycol) (PEG), and poly(vinylcaprolactame) (PVCL), as well as natural polysaccharides, including gellan, welan, pectin, and κ-carrageenan. The absorption spectra, average hydrodynamic size, ζ-potential, and morphology of the gold nanoparticles were evaluated based on various factors, such as polymer concentration, molecular mass of polymers, temperature, and storage time. The optimal polymer concentration for stabilization of AuNPs was found to be 4.0 wt % for PVP, 0.5 wt % for gellan, and 0.2 wt % for pectin, welan, and κ-carrageenan. The values of the ζ-potential of polymer-stabilized AuNPs show that their surfaces are negatively charged. Most of the AuNPs are polydisperse particles, though very monodisperse AuNPs were detected in the presence of a 0.5 wt % gellan solution. At a constant polymer concentration of PVP (4 wt %), the average size of the PVP-AuNPs decreased with the decrease of molecular weight, and in the following order: PVP 350 kDa (~25 nm) > PVP 40 kDa (~8 nm) > PVP 10 kDa (~4 nm). The combination of Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy revealed that the functional groups of polymers that are responsible for stabilization of AuNPs are lactam ring in PVP, carboxylic groups in gellan and welan, esterified carboxylic groups in pectin, and SO2 groups in κ-carrageenan. Viscometric and proton nuclear magnetic resonance (1H NMR) spectroscopic measurements showed that the temperature-dependent change in the size of AuNPs, and the gradual increase of the intensity of AuNPs at 550 nm in the presence of gellan, is due to the rigid and disordered conformation of gellan that affects the stabilization of AuNPs. The AuNPs synthesized in the presence of water-soluble polymers were stable over a period of 36 days. Preliminary results on the synthesis and characterization of gold nanorods stabilized by polymers are also presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA