Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 315: 111123, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35067296

RESUMEN

Biofortification, the enrichment of nutrients in crop plants, is of increasing importance to improve human health. The wild barley nested association mapping (NAM) population HEB-25 was developed to improve agronomic traits including nutrient concentration. Here, we evaluated the potential of high-throughput hyperspectral imaging in HEB-25 to predict leaf concentration of 15 mineral nutrients, sampled from two field experiments and four developmental stages. Particularly accurate predictions were obtained by partial least squares regression (PLS) modeling of leaf concentrations for N, P and K reaching coefficients of determination of 0.90, 0.75 and 0.89, respectively. We recognized nutrient-specific patterns of variation of leaf nutrient concentration between developmental stages. A number of quantitative trait loci (QTL) associated with the simultaneous expression of leaf nutrients were detected, indicating their potential co-regulation in barley. For example, the wild barley allele of QTL-4H-1 simultaneously increased leaf concentration of N, P, K and Cu. Similar effects of the same QTL were previously reported for nutrient concentrations in grains, supporting a potential parallel regulation of N, P, K and Cu in leaves and grains of HEB-25. Our study provides a new approach for nutrient assessment in large-scale field experiments to ultimately select genes and genotypes supporting plant biofortification.


Asunto(s)
Biofortificación , Hordeum/genética , Hordeum/metabolismo , Imágenes Hiperespectrales/métodos , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Predicción , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Alemania , Aprendizaje Automático , Fenotipo
2.
Plant Methods ; 16: 142, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101451

RESUMEN

BACKGROUND: Grapevine trunk diseases (GTDs) such as Esca are among the most devastating threats to viticulture. Due to the lack of efficient preventive and curative treatments, Esca causes severe economic losses worldwide. Since symptoms do not develop consecutively, the true incidence of the disease in a vineyard is difficult to assess. Therefore, an annual monitoring is required. In this context, automatic detection of symptoms could be a great relief for winegrowers. Spectral sensors have proven to be successful in disease detection, allowing a non-destructive, objective, and fast data acquisition. The aim of this study is to evaluate the feasibility of the in-field detection of foliar Esca symptoms over three consecutive years using ground-based hyperspectral and airborne multispectral imaging. RESULTS: Hyperspectral disease detection models have been successfully developed using either original field data or manually annotated data. In a next step, these models were applied on plant scale. While the model using annotated data performed better during development, the model using original data showed higher classification accuracies when applied in practical work. Moreover, the transferability of disease detection models to unknown data was tested. Although the visible and near-infrared (VNIR) range showed promising results, the transfer of such models is challenging. Initial results indicate that external symptoms could be detected pre-symptomatically, but this needs further evaluation. Furthermore, an application specific multispectral approach was simulated by identifying the most important wavelengths for the differentiation tasks, which was then compared to real multispectral data. Even though the ground-based multispectral disease detection was successful, airborne detection remains difficult. CONCLUSIONS: In this study, ground-based hyperspectral and airborne multispectral approaches for the detection of foliar Esca symptoms are presented. Both sensor systems seem to be suitable for the in-field detection of the disease, even though airborne data acquisition has to be further optimized. Our disease detection approaches could facilitate monitoring plant phenotypes in a vineyard.

3.
Sensors (Basel) ; 17(7)2017 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-28708080

RESUMEN

In grapevine research the acquisition of phenotypic data is largely restricted to the field due to its perennial nature and size. The methodologies used to assess morphological traits and phenology are mainly limited to visual scoring. Some measurements for biotic and abiotic stress, as well as for quality assessments, are done by invasive measures. The new evolving sensor technologies provide the opportunity to perform non-destructive evaluations of phenotypic traits using different field phenotyping platforms. One of the biggest technical challenges for field phenotyping of grapevines are the varying light conditions and the background. In the present study the Phenoliner is presented, which represents a novel type of a robust field phenotyping platform. The vehicle is based on a grape harvester following the concept of a moveable tunnel. The tunnel it is equipped with different sensor systems (RGB and NIR camera system, hyperspectral camera, RTK-GPS, orientation sensor) and an artificial broadband light source. It is independent from external light conditions and in combination with artificial background, the Phenoliner enables standardised acquisition of high-quality, geo-referenced sensor data.


Asunto(s)
Vitis , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA