RESUMEN
In vitro production (IVP) of embryos and associated technologies in cattle have shown significant progress in recent years, in part driven by a better understanding of the full potential of these tools by end users. The combination of IVP with sexed semen (SS) and genomic selection (GS) is being successfully and widely used in North America, South America and Europe. The main advantages offered by these technologies include a higher number of embryos and pregnancies per unit of time, and a wider range of potential female donors from which to retrieve oocytes (including open cyclic females and ones up to 3 months pregnant), including high index genomic calves, a reduced number of sperm required to produce embryos and increased chances of obtaining the desired sex of offspring. However, there are still unresolved aspects of IVP of embryos that limit a wider implementation of the technology, including potentially reduced fertility from the use of SS, reduced oocyte quality after in vitro oocyte maturation and lower embryo cryotolerance, resulting in reduced pregnancy rates compared to in vivo-produced embryos. Nevertheless, promising research results have been reported, and work is in progress to address current deficiencies. The combination of GS, IVP and SS has proven successful in the commercial field in several countries assisting practitioners and cattle producers to improve reproductive performance, efficiency and genetic gain.
Asunto(s)
Bovinos/embriología , Técnicas de Cultivo de Embriones/veterinaria , Fertilización In Vitro/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Animales , Técnicas de Cultivo de Embriones/métodos , Fertilización In Vitro/métodos , Técnicas de Maduración In Vitro de los Oocitos/métodosRESUMEN
Straws of sex-sorted sperm are usually packaged at a low concentration (e.g., ~2.1 × 106 sperm/ml) and cost significantly more than unsorted conventional semen from the same sire. In order to maximize the efficiency of using sex-sorted sperm under in vitro fertilization conditions, the selection of an appropriate sperm separation technique is essential. In this study, the effect of using different silane-coated silica colloid dilutions and layering configurations during centrifugation of sex-sorted sperm was examined over an extended period of incubation time. Sperm recovery and viability after centrifugation using the colloid separation technique were measured along with several sperm motility parameters using CASA. For this purpose, frozen and thawed sex-sorted sperm samples were centrifuged using mini-volume single-layer (40%, 60% and 80%) and mini-volume two-layer (45%/90%, 40%/80% and 30%/60%) separation configurations using PureSperm® . A single layer of 40% PureSperm® recovered significantly more sex-sorted sperm (78.07% ± 2.28%) followed by a single layer of 80% PureSperm® (68.43% ± 2.33%). The lowest sperm recovery was obtained using a two-layer PureSperm® dilution of 45%/90% (47.57% ± 2.33%). Single-layer centrifugation recovered more sorted sperm (68.67% ± 1.74%) than two layer (53.74% ± 1.74%) (p < .0001). A single layer of 80% PureSperm® exhibited the highest sorted sperm viability (72.01% ± 2.90%) after centrifugation (p < .05). The mini-volume single layer of 80% PureSperm® was determined to be an effective alternative to a two-layer centrifugation configuration for sex-sorted sperm selection. In addition, single-layer colloid dilution of 80% performed either as well as or significantly outperformed the other treatments, as well as the control, with regard to motility (MOT) for all time periods of analysis.
Asunto(s)
Centrifugación/veterinaria , Espermatozoides/fisiología , Animales , Bovinos , Centrifugación/métodos , Coloides/farmacología , Criopreservación/métodos , Criopreservación/veterinaria , Citometría de Flujo/veterinaria , Procesamiento de Imagen Asistido por Computador , Masculino , Análisis de Semen/métodos , Análisis de Semen/veterinaria , Preselección del Sexo/veterinariaRESUMEN
BACKGROUND: In order to improve ICSI, appropiate sperm selection and oocyte activation is necessary. The objective of the present study was to determine the efficiency of fertilization using ICSI with chemically activated ovine oocytes and sperm selected by swim up (SU) or swim up + zona pellucida (SU + ZP) binding. RESULTS: Experiment 1, 4-20 replicates with total 821 in vitro matured oocytes were chemically activated with ethanol, calcium ionophore or ionomycin, to determine oocyte activation (precense of one PN). Treatments showed similar results (54, 47, 42 %, respectively) but statistically differents (P < 0.05) than mechanical activated oocytes in sham, ICSI and sham injection (13, 25, 32 %, respectively) (10-17 replicates; n = 429). Experiment 2: Twelve ejaculates and 28 straws of semen were used (11-19 replicates). Sperm were selected by SU in BSA-TCM 199-H medium. A total of 2,294 fresh sperm and 2,760 from frozen-thawed semen were analyzed after SU or SU + ZP binding. Fresh sperm selected by SU showed acrosome reaction (AR) of 59 %, the sperm selected by SU + ZP binding increased AR to 91 %. In comparison, the AR of frozen-thawed sperm using SU or SU + ZP binding was 77 and 86 %, respectively (P < 0.05). Experiment 3: fertilization in 200 mechanical activativated oocytes (17 replicates) was 4 %, but fertilization increased in ethanol activated oocytes after ICSI (12-28 %) (5-6 replicates). When fresh sperm only selected by SU were injected to 123 oocytes, a fertilization rate (28 %) was achieved; in sperm selected by SU + ZP was 25 % (73 oocytes). In comparison, in frozen-thawed sperm selected by SU, fertilization was 13 % (70 oocytes), whereas sperm from SU + ZP binding displayed 12 % (51 oocytes) (P > 0.05). CONCLUSIONS: Chemical activation induces higher ovine oocyte activation than mechanical activation. Ethanol slightly displays higher oocyte activation than calcium ionophore and ionomicine. Sperm selection with SU + ZP increased AR/A and AR/D rates in comparison with SU in fresh and frozen-thawed sperm. According to this, in terms of fertilization rates, chemical activation after ICSI increased oocyte PN formation compared to mechanical activation. Also, fresh sperm treated with SU and SU + ZP were significantly different than frozen-thawed sperm, but between sperm treatments no significant differences were obtained.
RESUMEN
The aim of this study was to quantify the content of lipid droplets in bovine oocytes and embryos from Bos indicus (Bi), Bos taurus (Bt) and Bos indicus × Bos taurus (Bi × Bt). Oocytes were aspirated post-mortem and subjected to in vitro maturation, in vitro fertilization and in vitro development; the medium employed at each stage (TCM-199, TALP, SOF) was supplemented with (i) serum replacement (SR), (ii) foetal calf serum (FCS) or (iii) oestrous cow serum (ECS). The structure and distribution of the lipid droplets were established using electron microscopy, but were quantified using an optical microscope on semi-fine toluidine blue-stained sections. The highest percentage of embryos corresponded to those produced with FCS and ECS, which differed from embryos generated with SR (p < 0.05). The highest percentage of morulae and the lowest percentage of blastocysts were obtained with the SR supplement (p < 0.05). The oocytes cultured in FCS demonstrated a higher number of lipid droplets compared to those cultured in SR and ECS (p < 0.05). Less accumulation of lipids was observed in embryos supplemented with SR. The lowest and highest numbers of lipid droplets in oocytes corresponded to the Bi and Bt strain, respectively. The lowest amount of lipid droplets in embryos was observed in Bi (p < 0.05). In conclusion, supplementation of the in vitro development culture medium (synthetic oviduct fluid) with a synthetic substitute serum produced similar results in terms of embryo development compared to those obtained with FCS, but a decreased degree of lipid droplet accumulation was observed in the in vitro-cultured embryos.