Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glia ; 71(4): 1081-1098, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598109

RESUMEN

Astrocytes are increasingly shown to operate as an isopotential syncytium in brain function. Protoplasmic astrocytes acquire this ability to functionally go beyond the single-cell level by evolving into a spongiform morphology, cytoplasmically connecting into a syncytium, and expressing a high density of K+ conductance. However, none of these cellular/functional features exist in neonatal newborn astrocytes, which imposes a basic question of when a functional syncytium evolves in the developing brain. Our results show that the spongiform morphology of individual astrocytes and their spatial organization all reach stationary levels by postnatal day (P) 15 in the hippocampal CA1 region. Functionally, astrocytes begin to uniformly express a mature level of passive K+ conductance by P11. We next used syncytial isopotentiality measurement to monitor the maturation of the astrocyte syncytium. In uncoupled P1 astrocytes, the substitution of endogenous K+ by a Na+ -electrode solution ([Na+ ]p ) resulted in the total elimination of the physiological membrane potential (VM ), and outward K+ conductance as predicted by the Goldman-Hodgkin-Katz (GHK) equation. As more astrocytes are coupled to each other through gap junctions during development, the [Na+ ]p -induced loss of physiological VM and the outward K+ conductance is progressively compensated by the neighboring astrocytes. By P15, a stably established syncytial isopotentiality (-73 mV), and a fully compensated outward K+ conductance appeared in all [Na+ ]p -recorded astrocytes. Thus, in view of the developmental timeframe wherein a singular syncytium is anatomically and functionally established for intra-syncytium K+ equilibration, an astrocyte syncytium becomes fully operational at P15 in the mouse hippocampus.


Asunto(s)
Astrocitos , Hipocampo , Ratones , Animales , Astrocitos/fisiología , Potenciales de la Membrana/fisiología , Uniones Comunicantes/fisiología , Región CA1 Hipocampal
2.
Prog Neurobiol ; 213: 102264, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35283239

RESUMEN

The complexity of astrocyte morphology and syncytial coupling through gap junctions are crucial for astrocyte function in the brain. However, the ultrastructural details of astrocyte arborization and interactions between neighboring astrocytes remain unknown. While a prevailing view is that synapses selectively contact peripheral astrocyte processes, the precise spatial-location selectivity of synapses abutting astrocytes is unresolved. Additionally, knowing the location and quantity of vesicles and mitochondria are prerequisites to answer two emerging questions - whether astrocytes have a signaling role within the brain and whether astrocytes are highly metabolically active. Here, we provided structural context for these questions by tracing and 3D reconstructing three neighboring astrocytes using serial block-face scanning electron microscopy. Our reconstructions reveal a spongiform astrocytic morphology resulting from the abundance of reflexive and leaflet processes. At the interfaces, varying sizes of astrocyte-astrocyte contacts were identified. Inside an astrocyte domain, synapses contact the entire astrocyte, and synapse-astrocyte contacts increase from soma to terminal leaflets. In contrast to densely packed vesicles at synaptic boutons, vesicle-like structures were scant within astrocytes. Lastly, astrocytes contain dense mitochondrial networks with a mitochondrial volume ratio similar to that of neurites. Together, these ultrastructural details should expand our understanding of functional astrocyte-astrocyte and astrocyte-neuron interactions.


Asunto(s)
Astrocitos , Sinapsis , Astrocitos/metabolismo , Encéfalo , Humanos , Mitocondrias , Neuronas/fisiología , Sinapsis/metabolismo
3.
Brain Sci ; 10(4)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252295

RESUMEN

Astrocyte syncytial isopotentiality is a physiological mechanism resulting from a strong electrical coupling among astrocytes. We have previously shown that syncytial isopotentiality exists as a system-wide feature that coordinates astrocytes into a system for high efficient regulation of brain homeostasis. Neuronal activity is known to regulate gap junction coupling through alteration of extracellular ions and neurotransmitters. However, the extent to which epileptic neuronal activity impairs the syncytial isopotentiality is unknown. Here, the neuronal epileptiform bursts were induced in acute hippocampal slices by removal of Mg2+ (Mg2+ free) from bath solution and inhibition of γ-aminobutyric acid A (GABAA) receptors by 100 µM picrotoxin (PTX). The change in syncytial coupling was monitored by using a K+ free-Na+-containing electrode solution ([Na+]p) in the electrophysiological recording where the substitution of intracellular K+ by Na+ ions dissipates the physiological membrane potential (VM) to ~0 mV in the recorded astrocyte. However, in a syncytial coupled astrocyte, the [Na+]p induced VM loss can be compensated by the coupled astrocytes to a quasi-physiological membrane potential of ~73 mV. After short-term exposure to this experimental epileptic condition, a significant closure of syncytial coupling was indicated by a shift of the quasi-physiological membrane potential to -60 mV, corresponding to a 90% reduction of syncytial coupling strength. Consequently, the closure of syncytial coupling significantly decreased the ability of the syncytium for spatial redistribution of K+ ions. Altogether, our results show that epileptiform neuronal discharges weaken the strength of syncytial coupling and that in turn impairs the capacity of a syncytium for spatial redistribution of K+ ions.

4.
J Clin Invest ; 130(1): 345-358, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31793909

RESUMEN

Axon regeneration failure causes neurological deficits and long-term disability after spinal cord injury (SCI). Here, we found that the α2δ2 subunit of voltage-gated calcium channels negatively regulates axon growth and regeneration of corticospinal neurons, the cells that originate the corticospinal tract. Increased α2δ2 expression in corticospinal neurons contributed to loss of corticospinal regrowth ability during postnatal development and after SCI. In contrast, α2δ2 pharmacological blockade through gabapentin administration promoted corticospinal structural plasticity and regeneration in adulthood. Using an optogenetic strategy combined with in vivo electrophysiological recording, we demonstrated that regenerating corticospinal axons functionally integrate into spinal circuits. Mice administered gabapentin recovered upper extremity function after cervical SCI. Importantly, such recovery relies on reorganization of the corticospinal pathway, as chemogenetic silencing of injured corticospinal neurons transiently abrogated recovery. Thus, targeting α2δ2 with a clinically relevant treatment strategy aids repair of motor circuits after SCI.


Asunto(s)
Axones/metabolismo , Gabapentina/farmacología , Regeneración Nerviosa/efectos de los fármacos , Traumatismos Vertebrales/tratamiento farmacológico , Animales , Axones/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Regeneración Nerviosa/genética , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Traumatismos Vertebrales/genética , Traumatismos Vertebrales/metabolismo , Traumatismos Vertebrales/patología
5.
Mol Neurobiol ; 57(3): 1332-1346, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31728930

RESUMEN

TREK-1, a two-pore-domain K+ channel, is highly expressed in the central nervous system. Although aberrant expression of TREK-1 is implicated in cognitive impairment, the cellular and functional mechanism underlying this channelopathy is poorly understood. Here we examined TREK-1 contribution to neuronal morphology, excitability, synaptic plasticity, and cognitive function in mice deficient in TREK-1 expression. TREK-1 immunostaining signal mainly appeared in hippocampal pyramidal neurons, but not in astrocytes. TREK-1 gene knockout (TREK-1 KO) increases dendritic sprouting and the number of immature spines in hippocampal CA1 pyramidal neurons. Functionally, TREK-1 KO increases neuronal excitability and enhances excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs). The increased EPSCs appear to be attributed to an increased release probability of presynaptic glutamate and functional expression of postsynaptic AMPA receptors. TREK-1 KO decreased the paired-pulse ratio and severely occluded the long-term potentiation (LTP) in the CA1 region. These altered synaptic transmission and plasticity are associated with recognition memory deficit in TREK-1 KO mice. Although astrocytic expression of TREK-1 has been reported in previous studies, TREK-1 KO does not alter astrocyte membrane K+ conductance or the syncytial network function in terms of syncytial isopotentiality. Altogether, TREK-1 KO profoundly affects the cellular structure and function of hippocampal pyramidal neurons. Thus, the impaired cognitive function in diseases associated with aberrant expression of TREK-1 should be attributed to the failure of this K+ channel in regulating neuronal morphology, excitability, synaptic transmission, and plasticity.


Asunto(s)
Cognición/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Plasticidad Neuronal/genética , Neuronas/fisiología , Canales de Potasio de Dominio Poro en Tándem/genética , Animales , Astrocitos/metabolismo , Potenciales Postsinápticos Excitadores/genética , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Ratones Noqueados , Plasticidad Neuronal/fisiología , Células Piramidales/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
6.
Neural Regen Res ; 14(4): 595-596, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30632498
7.
Glia ; 66(12): 2756-2769, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30277621

RESUMEN

Syncytial isopotentiality, resulting from a strong electrical coupling, emerges as a physiological mechanism that coordinates individual astrocytes to function as a highly efficient system in brain homeostasis. However, whether syncytial isopotentiality occurs selectively to certain brain regions or is universal to astrocytic networks remains unknown. Here, we have explored the correlation of syncytial isopotentiality with different astrocyte subtypes in various brain regions. Using a nonphysiological K+ -free/Na+ electrode solution to depolarize a recorded astrocyte in situ, the existence of syncytial isopotentiality can be revealed: the recorded astrocyte's membrane potential remains at a quasi-physiological level due to strong electrical coupling with neighboring astrocytes. Syncytial isopotentiality appears in Layer I of the motor, sensory, and visual cortical regions, where astrocytes are organized with comparable cell densities, interastrocytic distances, and the quantity of directly coupled neighbors. Second, though astrocytes vary in their cytoarchitecture in association with neuronal circuits from Layers I-VI, the established syncytial isopotentiality remains comparable among different layers in the visual cortex. Third, neurons and astrocytes are uniquely organized as barrels in Layer IV somatosensory cortex; interestingly, astrocytes both inside and outside of the barrels do electrically communicate with each other and also share syncytial isopotentiality. Fourth, syncytial isopotentiality appears in radial-shaped Bergmann glia and velate astrocytes in the cerebellar cortex. Fifth, although fibrous astrocytes in white matter exhibit a distinct morphology, their network syncytial isopotentiality is comparable with protoplasmic astrocytes. Altogether, syncytial isopotentiality appears as a system-wide electrical feature of astrocytic networks in the brain.


Asunto(s)
Astrocitos/fisiología , Encéfalo/citología , Uniones Comunicantes/fisiología , Potenciales de la Membrana/fisiología , Red Nerviosa/fisiología , Familia de Aldehído Deshidrogenasa 1 , Animales , Animales Recién Nacidos , Células Cultivadas , Conexina 43/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Isoenzimas/genética , Isoenzimas/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp , Fosfopiruvato Hidratasa/metabolismo , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Sodio/metabolismo , Sustancia Blanca/citología
8.
Exp Neurol ; 303: 1-11, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29407729

RESUMEN

Membrane potential (VM) depolarization occurs immediately following cerebral ischemia and is devastating for the astrocyte homeostasis and neuronal signaling. Previously, an excessive release of extracellular K+ and glutamate has been shown to underlie an ischemia-induced VM depolarization. Ischemic insults should impair membrane ion channels and disrupt the physiological ion gradients. However, their respective contribution to ischemia-induced neuronal and glial depolarization and loss of neuronal excitability are unanswered questions. A short-term oxygen-glucose deprivation (OGD) was used for the purpose of examining the acute effect of ischemic conditions on ion channel activity and physiological K+ gradient in neurons and glial cells. We show that a 30 min OGD treatment exerted no measurable damage to the function of membrane ion channels in neurons, astrocytes, and NG2 glia. As a result of the resilience of membrane ion channels, neuronal spikes last twice as long as our previously reported 15 min time window. In the electrophysiological analysis, a 30 min OGD-induced dissipation of transmembrane K+ gradient contributed differently in brain cell depolarization: severe in astrocytes and neurons, and undetectable in NG2 glia. The discrete cellular responses to OGD corresponded to a total loss of 69% of the intracellular K+ contents in hippocampal slices as measured by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). A major brain cell depolarization mechanism identified here is important for our understanding of cerebral ischemia pathology. Additionally, further understanding of the resilient response of NG2 glia to ischemia-induced intracellular K+ loss and depolarization should facilitate the development of future stroke therapy.


Asunto(s)
Astrocitos/fisiología , Fenómenos Biofísicos/fisiología , Glucosa/metabolismo , Hipoxia/fisiopatología , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Potasio/metabolismo , Animales , Animales Recién Nacidos , Antígenos/metabolismo , Fenómenos Biofísicos/efectos de los fármacos , Conductividad Eléctrica , Femenino , Células Gigantes/fisiología , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxígeno/farmacología , Técnicas de Placa-Clamp , Proteoglicanos/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
9.
Mol Brain ; 9: 34, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27004553

RESUMEN

BACKGROUND: Neonatal astrocytes are diverse in origin, and undergo dramatic change in gene expression, morphological differentiation and  syncytial networking throughout development. Neonatal astrocytes also play multifaceted roles in neuronal circuitry establishment. However, the extent to which neonatal astrocytes differ from their counterparts in the adult brain remains unknown. RESULTS: Based on ALDH1L1-eGFP expression or sulforhodamine 101 staining, neonatal astrocytes at postnatal day 1-3 can be reliably identified in hippocampal stratum radiatum. They exhibit a more negative resting membrane potential (V M), -85 mV, than mature astrocytes, -80 mV and a variably rectifying whole-cell current profile due to complex expression of voltage-gated outward transient K(+) (IKa), delayed rectifying K(+) (IKd) and inward K(+) (IKin) conductances. Differing from NG2 glia, depolarization-induced inward Na(+) currents (INa) could not be detected in neonatal astrocytes. A quasi-physiological V M of -69 mV was retained when inwardly rectifying Kir4.1 was inhibited by 100 µM Ba(2+) in both wild type and TWIK-1/TREK-1 double gene knockout astrocytes, indicating expression of additional leak K(+) channels yet unknown. In dual patch recording, electrical coupling was detected in 74 % (14/19 pairs) of neonatal astrocytes with largely variable coupling coefficients. The increasing gap junction coupling progressively masked the rectifying K(+) conductances to account for an increasing number of linear voltage-to-current relationship passive astrocytes (PAs). Gap junction inhibition, by 100 µM meclofenamic acid, substantially reduced membrane conductance and converted all the neonatal PAs to variably rectifying astrocytes. The low density expression of leak K(+) conductance in neonatal astrocytes corresponded  to a ~50 % less K(+) uptake capacity compared to adult astrocytes. CONCLUSIONS: Neonatal astrocytes predominantly express a variety of rectifying K(+) conductances, form discrete cell-to-cell gap junction coupling and are deficient in K(+) homeostatic capacity.


Asunto(s)
Astrocitos/metabolismo , Fenómenos Electrofisiológicos , Hipocampo/metabolismo , Animales , Bario/metabolismo , Uniones Comunicantes/metabolismo , Activación del Canal Iónico , Cinética , Ratones Endogámicos C57BL , Fenotipo , Canales de Potasio de Rectificación Interna/metabolismo
10.
Front Cell Neurosci ; 10: 13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26869883

RESUMEN

We have recently shown that a linear current-to-voltage (I-V) relationship of membrane conductance (passive conductance) reflects the intrinsic property of K(+) channels in mature astrocytes. While passive conductance is known to underpin a highly negative and stable membrane potential (V M) essential for the basic homeostatic function of astrocytes, a complete repertoire of the involved K(+) channels remains elusive. TREK-1 two-pore domain K(+) channel (K2P) is highly expressed in astrocytes, and covalent association of TREK-1 with TWIK-1, another highly expressed astrocytic K2P, has been reported as a mechanism underlying the trafficking of heterodimer TWIK-1/TREK-1 channel to the membrane and contributing to astrocyte passive conductance. To decipher the individual contribution of TREK-1 and address whether the appearance of passive conductance is conditional to the co-expression of TWIK-1/TREK-1 in astrocytes, TREK-1 single and TWIK-1/TREK-1 double gene knockout mice were used in the present study. The relative quantity of mRNA encoding other astrocyte K(+) channels, such as Kir4.1, Kir5.1, and TREK-2, was not altered in these gene knockout mice. Whole-cell recording from hippocampal astrocytes in situ revealed no detectable changes in astrocyte passive conductance, V M, or membrane input resistance (R in) in either kind of gene knockout mouse. Additionally, TREK-1 proteins were mainly located in the intracellular compartments of the hippocampus. Altogether, genetic deletion of TREK-1 alone or together with TWIK-1 produced no obvious alteration in the basic electrophysiological properties of hippocampal astrocytes. Thus, future research focusing on other K(+) channels may shed light on this long-standing and important question in astrocyte physiology.

11.
Glia ; 64(2): 214-26, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26435164

RESUMEN

Astrocytes are extensively coupled through gap junctions into a syncytium. However, the basic role of this major brain network remains largely unknown. Using electrophysiological and computational modeling methods, we demonstrate that the membrane potential (VM) of an individual astrocyte in a hippocampal syncytium, but not in a single, freshly isolated cell preparation, can be well-maintained at quasi-physiological levels when recorded with reduced or K(+) free pipette solutions that alter the K(+) equilibrium potential to non-physiological voltages. We show that an astrocyte's associated syncytium provides powerful electrical coupling, together with ionic coupling at a lesser extent, that equalizes the astrocyte's VM to levels comparable to its neighbors. Functionally, this minimizes VM depolarization attributable to elevated levels of local extracellular K(+) and thereby maintains a sustained driving force for highly efficient K(+) uptake. Thus, gap junction coupling functions to achieve isopotentiality in astrocytic networks, whereby a constant extracellular environment can be powerfully maintained for crucial functions of neural circuits.


Asunto(s)
Astrocitos/fisiología , Uniones Comunicantes/fisiología , Potenciales de la Membrana/fisiología , Animales , Cationes Monovalentes/metabolismo , Células Cultivadas , Espacio Extracelular/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/fisiología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiología , Potasio/metabolismo , Técnicas de Cultivo de Tejidos
12.
Mol Neurobiol ; 53(9): 6169-6182, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26553349

RESUMEN

TWIK-1 two-pore domain K+ channels are highly expressed in mature hippocampal astrocytes. While the TWIK-1 activity is readily detectable on astrocyte membrane, the majority of channels are retained in the intracellular compartments, which raises an intriguing question of whether the membrane TWIK-1 channels could be dynamically regulated for functions yet unknown. Here, the regulation of TWIK-1 membrane expression by Gi/Go-coupled metabotropic glutamate receptor 3 (mGluR3) and its functional impact on ammonium uptake has been studied. Activation of mGluR3 induced a marked translocation of TWIK-1 channels from the cytoplasm to the membrane surface. Consistent with our early observation that membrane TWIK-1 behaves as nonselective monovalent cation channel, mGluR3-mediated TWIK-1 membrane expression was associated with a depolarizing membrane potential (V M). As TWIK-1 exhibits a discernibly high permeability to ammonium (NH4+), a critical substrate in glutamate-glutamine cycle for neurotransmitter replenishment, regulation of NH4+ uptake capacity by TWIK-1 membrane expression was determined by response of astrocyte V M to bath application of 5 mM NH4Cl. Stimulation of mGluR3 potentiated NH4+-induced V M depolarization by ∼30 % in wild type, but not in TWIK-1 knockout astrocytes. Furthermore, activation of mGluR3 mediated a coordinated translocation of TWIK-1 channels with recycling endosomes toward astrocyte membrane and the mGluR3-mediated potentiation of NH4+ uptake required a functional Rab-mediated trafficking pathway. Altogether, we demonstrate that the activation of mGluR3 up-regulates the membrane expression of TWIK-1 that in turn enhances NH4+ uptake in astrocytes, a mechanism potentially important for functional coupling of astrocyte glutamate-glutamine cycle with the replenishment of neurotransmitters in neurons.


Asunto(s)
Compuestos de Amonio/metabolismo , Astrocitos/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Hipocampo/citología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Endocitosis , Endosomas/metabolismo , Exocitosis , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Glutamato Metabotrópico/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteínas de Unión al GTP rab/metabolismo
13.
J Neurophysiol ; 113(10): 3744-50, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25810481

RESUMEN

Mature astrocytes exhibit a linear current-to-voltage K(+) membrane conductance (passive conductance) and an extremely low membrane resistance (Rm) in situ. The combination of these electrophysiological characteristics establishes a highly negative and stable membrane potential that is essential for basic functions, such as K(+) spatial buffering and neurotransmitter uptake. However, astrocytes are coupled extensively in situ. It remains to be determined whether the observed passive behavior and low Rm are attributable to the intrinsic properties of membrane ion channels or to gap junction coupling in functionally mature astrocytes. In the present study, freshly dissociated hippocampal tissues were used as a new model to examine this basic question in young adult animals. The morphologically intact single astrocytes could be reliably dissociated from animals postnatal day 21 and older. At this animal age, dissociated single astrocytes exhibit passive conductance and resting membrane potential similar to those exhibited by astrocytes in situ. To precisely measure the Rm from single astrocytes, dual-patch single-astrocyte recording was performed. We show that dissociated single astrocytes exhibit a low Rm similarly to syncytial coupled astrocytes. Functionally, the symmetric expression of high-K(+) conductance enabled rapid change in the intracellular K(+) concentrations in response to changing K(+) drive force. Altogether, we demonstrate that freshly dissociated tissue preparation is a highly useful model for study of the functional expression and regulation of ion channels, receptors, and transporters in astrocytes and that passive behavior and low Rm are the intrinsic properties of mature astrocytes.


Asunto(s)
Astrocitos/fisiología , Uniones Comunicantes/fisiología , Hipocampo/citología , Potenciales de la Membrana/fisiología , Animales , Biofisica , Estimulación Eléctrica , Técnicas In Vitro , Ratones , Microscopía Confocal , Técnicas de Placa-Clamp , Potasio/metabolismo , Rodaminas/metabolismo
14.
PLoS One ; 7(11): e49020, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23152843

RESUMEN

Glycobiology research with Caenorhabditis elegans (C. elegans) has benefitted from the numerous genetic and cell biology tools available in this system. However, the lack of a cell line and the relative inaccessibility of C. elegans somatic cells in vivo have limited the biochemical approaches available in this model. Here we report that C. elegans primary embryonic cells in culture incorporate azido-sugar analogs of N-acetylgalactosamine (GalNAc) and N-acetylglucosamine (GlcNAc), and that the labeled glycoproteins can be analyzed by mass spectrometry. By using this metabolic labeling approach, we have identified a set of novel C. elegans glycoprotein candidates, which include several mitochondrially-annotated proteins. This observation was unexpected given that mitochondrial glycoproteins have only rarely been reported, and it suggests that glycosylation of mitochondrially-annotated proteins might occur more frequently than previously thought. Using independent experimental strategies, we validated a subset of our glycoprotein candidates. These include a mitochondrial, atypical glycoprotein (ATP synthase α-subunit), a predicted glycoprotein (aspartyl protease, ASP-4), and a protein family with established glycosylation in other species (actin). Additionally, we observed a glycosylated isoform of ATP synthase α-subunit in bovine heart tissue and a primate cell line (COS-7). Overall, our finding that C. elegans primary embryonic cells are amenable to metabolic labeling demonstrates that biochemical studies in C. elegans are feasible, which opens the door to labeling C. elegans cells with other radioactive or azido-substrates and should enable the identification of additional post-translationally modified targets and analysis of the genes required for their modification using C. elegans mutant libraries.


Asunto(s)
Caenorhabditis elegans/química , Glicoproteínas/química , Actinas/química , Animales , Azidas/química , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Carbohidratos/química , Células Cultivadas , Glicoproteínas/metabolismo , Glicosilación , Isoenzimas/química , ATPasas de Translocación de Protón Mitocondriales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA