Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(29): 26561-26576, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521598

RESUMEN

Clindamycin (CDM)/geranylgeraniol (GGOH)-loaded plasma-treated mesoporous silica nanoparticles/carboxymethyl chitosan composite hydrogels (CHG60 and CHG120) were developed for the prevention of medication-related osteonecrosis of the jaw associated with bisphosphonates (MRONJ-B). The pore structure and performances of CHGs, e.g., drug release profiles and kinetics, antibacterial activity, zoledronic acid (ZA)-induced cytotoxicity reversal activity, and acute cytotoxicity, were evaluated. The bioinspired platform mimicking in vivo fibrin matrices was also proposed for the in vitro/in vivo correlation. CHG120 was further encapsulated in the human-derived fibrin, generating FCHG120. The SEM and µCT images revealed the interconnected porous structures of CHG120 in both pure and fibrin-surrounding hydrogels with %porosity of 75 and 36%, respectively, indicating the presence of fibrin inside the hydrogel pores, besides its peripheral region, which was evidenced by confocal microscopy. The co-presence of GGOH moderately decelerated the overall releases of CDM from CHGs in the studied releasing fluids, i.e., phosphate buffer saline-based fluid (PBB) and simulated interstitial fluid (SIF). The whole-lifetime release patterns of CDM, fitted by the Ritger-Peppas equation, appeared nondifferentiable, divided into two releasing stages, i.e., rapid and steady releasing stages, whereas the biphasic drug release patterns of GGOH were observed with Phase I and II releases fitted by the Higuchi and Ritger-Peppas equations, respectively. Notably, the burst releases of both drugs were subsided with lengthier durations (up to 10-12 days) in SIF, compared with those in PBB, enabling CHGs to elicit satisfactory antibacterial and ZA cytotoxicity reversal activities for MRONJ-B prevention. The fibrin network in FCHG120 further reduced and sustained the drug releases for at least 14 days, lengthening bactericidal and ZA cytotoxicity reversal activities of FCHG and decreasing in vitro and in ovo acute drug toxicity. This highlighted the significance of fibrin matrices as appropriate in vivo-like platforms to evaluate the performance of an implant.

2.
R Soc Open Sci ; 9(7): 220056, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35911203

RESUMEN

Periodontal ligament (PDL) cells help maintain tissue homeostasis by balancing PDL tissue inflammation and regeneration. However, the mechanisms by which interferon γ (IFNγ) modulate this process are not yet fully understood. The present study aimed to examine the effect of primed and non-primed PDL cells with IFNγ on the viability and differentiation of T lymphocytes and its functional consequences. The results showed that IFNγ-primed PDL cells possessed enhanced immunosuppression by suppressing T-lymphocyte viability and directing T-lymphocyte differentiation towards a higher T helper (Th) Th2/Th1 ratio. Suppression of T-cell viability was mainly mediated by IFNγ-inducible secreted mediators, which was prevented in the presence of direct cell contact, probably by intercellular adhesion molecule-1 (ICAM-1)-induced PI3 K-mediated transforming growth factor ß1 expression in PDL cells. By contrast, ICAM-1 activation augmented IFNγ-induced IFNγ and interleukin-6 expression in PDL cells, which in turn modulated T-cell differentiation. The resulting interaction between these two cell types activated macrophage and suppressed osteoclast differentiation. In conclusion, the results have shown, for the first time to our knowledge, that primed and non-primed PDL cells with IFNγ differentially control T-cell responses via IFNγ-inducible mediators and ICAM-1-mediated direct cell contact, suggesting the role of PDL cells in shifting an inflammatory phase towards a regenerative phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA