Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Arq Neuropsiquiatr ; 82(6): 1-12, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565188

RESUMEN

Radiology has a number of characteristics that make it an especially suitable medical discipline for early artificial intelligence (AI) adoption. These include having a well-established digital workflow, standardized protocols for image storage, and numerous well-defined interpretive activities. The more than 200 commercial radiologic AI-based products recently approved by the Food and Drug Administration (FDA) to assist radiologists in a number of narrow image-analysis tasks such as image enhancement, workflow triage, and quantification, corroborate this observation. However, in order to leverage AI to boost efficacy and efficiency, and to overcome substantial obstacles to widespread successful clinical use of these products, radiologists should become familiarized with the emerging applications in their particular areas of expertise. In light of this, in this article we survey the existing literature on the application of AI-based techniques in neuroradiology, focusing on conditions such as vascular diseases, epilepsy, and demyelinating and neurodegenerative conditions. We also introduce some of the algorithms behind the applications, briefly discuss a few of the challenges of generalization in the use of AI models in neuroradiology, and skate over the most relevant commercially available solutions adopted in clinical practice. If well designed, AI algorithms have the potential to radically improve radiology, strengthening image analysis, enhancing the value of quantitative imaging techniques, and mitigating diagnostic errors.


A radiologia tem uma série de características que a torna uma disciplina médica especialmente adequada à adoção precoce da inteligência artificial (IA), incluindo um fluxo de trabalho digital bem estabelecido, protocolos padronizados para armazenamento de imagens e inúmeras atividades interpretativas bem definidas. Tal adequação é corroborada pelos mais de 200 produtos radiológicos comerciais baseados em IA recentemente aprovados pelo Food and Drug Administration (FDA) para auxiliar os radiologistas em uma série de tarefas restritas de análise de imagens, como quantificação, triagem de fluxo de trabalho e aprimoramento da qualidade das imagens. Entretanto, para o aumento da eficácia e eficiência da IA, além de uma utilização clínica bem-sucedida dos produtos que utilizam essa tecnologia, os radiologistas devem estar atualizados com as aplicações em suas áreas específicas de atuação. Assim, neste artigo, pesquisamos na literatura existente aplicações baseadas em IA em neurorradiologia, mais especificamente em condições como doenças vasculares, epilepsia, condições desmielinizantes e neurodegenerativas. Também abordamos os principais algoritmos por trás de tais aplicações, discutimos alguns dos desafios na generalização no uso desses modelos e introduzimos as soluções comercialmente disponíveis mais relevantes adotadas na prática clínica. Se cautelosamente desenvolvidos, os algoritmos de IA têm o potencial de melhorar radicalmente a radiologia, aperfeiçoando a análise de imagens, aumentando o valor das técnicas de imagem quantitativas e mitigando erros de diagnóstico.


Asunto(s)
Inteligencia Artificial , Radiología , Humanos , Algoritmos , Radiología/métodos
2.
Radiol Artif Intell ; 6(1): e230103, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38294325

RESUMEN

This prospective exploratory study conducted from January 2023 through May 2023 evaluated the ability of ChatGPT to answer questions from Brazilian radiology board examinations, exploring how different prompt strategies can influence performance using GPT-3.5 and GPT-4. Three multiple-choice board examinations that did not include image-based questions were evaluated: (a) radiology and diagnostic imaging, (b) mammography, and (c) neuroradiology. Five different styles of zero-shot prompting were tested: (a) raw question, (b) brief instruction, (c) long instruction, (d) chain-of-thought, and (e) question-specific automatic prompt generation (QAPG). The QAPG and brief instruction prompt strategies performed best for all examinations (P < .05), obtaining passing scores (≥60%) on the radiology and diagnostic imaging examination when testing both versions of ChatGPT. The QAPG style achieved a score of 60% for the mammography examination using GPT-3.5 and 76% using GPT-4. GPT-4 achieved a score up to 65% in the neuroradiology examination. The long instruction style consistently underperformed, implying that excessive detail might harm performance. GPT-4's scores were less sensitive to prompt style changes. The QAPG prompt style showed a high volume of the "A" option but no statistical difference, suggesting bias was found. GPT-4 passed all three radiology board examinations, and GPT-3.5 passed two of three examinations when using an optimal prompt style. Keywords: ChatGPT, Artificial Intelligence, Board Examinations, Radiology and Diagnostic Imaging, Mammography, Neuroradiology © RSNA, 2023 See also the commentary by Trivedi and Gichoya in this issue.


Asunto(s)
Inteligencia Artificial , Radiología , Brasil , Estudios Prospectivos , Radiografía , Mamografía
3.
Eur Radiol ; 34(3): 2024-2035, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37650967

RESUMEN

OBJECTIVES: Evaluate the performance of a deep learning (DL)-based model for multiple sclerosis (MS) lesion segmentation and compare it to other DL and non-DL algorithms. METHODS: This ambispective, multicenter study assessed the performance of a DL-based model for MS lesion segmentation and compared it to alternative DL- and non-DL-based methods. Models were tested on internal (n = 20) and external (n = 18) datasets from Latin America, and on an external dataset from Europe (n = 49). We also examined robustness by rescanning six patients (n = 6) from our MS clinical cohort. Moreover, we studied inter-human annotator agreement and discussed our findings in light of these results. Performance and robustness were assessed using intraclass correlation coefficient (ICC), Dice coefficient (DC), and coefficient of variation (CV). RESULTS: Inter-human ICC ranged from 0.89 to 0.95, while spatial agreement among annotators showed a median DC of 0.63. Using expert manual segmentations as ground truth, our DL model achieved a median DC of 0.73 on the internal, 0.66 on the external, and 0.70 on the challenge datasets. The performance of our DL model exceeded that of the alternative algorithms on all datasets. In the robustness experiment, our DL model also achieved higher DC (ranging from 0.82 to 0.90) and lower CV (ranging from 0.7 to 7.9%) when compared to the alternative methods. CONCLUSION: Our DL-based model outperformed alternative methods for brain MS lesion segmentation. The model also proved to generalize well on unseen data and has a robust performance and low processing times both on real-world and challenge-based data. CLINICAL RELEVANCE STATEMENT: Our DL-based model demonstrated superior performance in accurately segmenting brain MS lesions compared to alternative methods, indicating its potential for clinical application with improved accuracy, robustness, and efficiency. KEY POINTS: • Automated lesion load quantification in MS patients is valuable; however, more accurate methods are still necessary. • A novel deep learning model outperformed alternative MS lesion segmentation methods on multisite datasets. • Deep learning models are particularly suitable for MS lesion segmentation in clinical scenarios.


Asunto(s)
Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Redes Neurales de la Computación , Algoritmos , Encéfalo/diagnóstico por imagen , Encéfalo/patología
4.
Arq. neuropsiquiatr ; Arq. neuropsiquiatr;82(6): s00441779486, 2024. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1564005

RESUMEN

Abstract Radiology has a number of characteristics that make it an especially suitable medical discipline for early artificial intelligence (AI) adoption. These include having a well-established digital workflow, standardized protocols for image storage, and numerous well-defined interpretive activities. The more than 200 commercial radiologic AI-based products recently approved by the Food and Drug Administration (FDA) to assist radiologists in a number of narrow image-analysis tasks such as image enhancement, workflow triage, and quantification, corroborate this observation. However, in order to leverage AI to boost efficacy and efficiency, and to overcome substantial obstacles to widespread successful clinical use of these products, radiologists should become familiarized with the emerging applications in their particular areas of expertise. In light of this, in this article we survey the existing literature on the application of AI-based techniques in neuroradiology, focusing on conditions such as vascular diseases, epilepsy, and demyelinating and neurodegenerative conditions. We also introduce some of the algorithms behind the applications, briefly discuss a few of the challenges of generalization in the use of AI models in neuroradiology, and skate over the most relevant commercially available solutions adopted in clinical practice. If well designed, AI algorithms have the potential to radically improve radiology, strengthening image analysis, enhancing the value of quantitative imaging techniques, and mitigating diagnostic errors.


Resumo A radiologia tem uma série de características que a torna uma disciplina médica especialmente adequada à adoção precoce da inteligência artificial (IA), incluindo um fluxo de trabalho digital bem estabelecido, protocolos padronizados para armazenamento de imagens e inúmeras atividades interpretativas bem definidas. Tal adequação é corroborada pelos mais de 200 produtos radiológicos comerciais baseados em IA recentemente aprovados pelo Food and Drug Administration (FDA) para auxiliar os radiologistas em uma série de tarefas restritas de análise de imagens, como quantificação, triagem de fluxo de trabalho e aprimoramento da qualidade das imagens. Entretanto, para o aumento da eficácia e eficiência da IA, além de uma utilização clínica bem-sucedida dos produtos que utilizam essa tecnologia, os radiologistas devem estar atualizados com as aplicações em suas áreas específicas de atuação. Assim, neste artigo, pesquisamos na literatura existente aplicações baseadas em IA em neurorradiologia, mais especificamente em condições como doenças vasculares, epilepsia, condições desmielinizantes e neurodegenerativas. Também abordamos os principais algoritmos por trás de tais aplicações, discutimos alguns dos desafios na generalização no uso desses modelos e introduzimos as soluções comercialmente disponíveis mais relevantes adotadas na prática clínica. Se cautelosamente desenvolvidos, os algoritmos de IA têm o potencial de melhorar radicalmente a radiologia, aperfeiçoando a análise de imagens, aumentando o valor das técnicas de imagem quantitativas e mitigando erros de diagnóstico.

5.
Radiol. bras ; Radiol. bras;56(5): 263-268, Sept.-Oct. 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1529323

RESUMEN

Abstract Objective: To validate a deep learning (DL) model for bone age estimation in individuals in the city of São Paulo, comparing it with the Greulich and Pyle method. Materials and Methods: This was a cross-sectional study of hand and wrist radiographs obtained for the determination of bone age. The manual analysis was performed by an experienced radiologist. The model used was based on a convolutional neural network that placed third in the 2017 Radiological Society of North America challenge. The mean absolute error (MAE) and the root-mean-square error (RMSE) were calculated for the model versus the radiologist, with comparisons by sex, race, and age. Results: The sample comprised 714 examinations. There was a correlation between the two methods, with a coefficient of determination of 0.94. The MAE of the predictions was 7.68 months, and the RMSE was 10.27 months. There were no statistically significant differences between sexes or among races (p > 0.05). The algorithm overestimated bone age in younger individuals (p = 0.001). Conclusion: Our DL algorithm demonstrated potential for estimating bone age in individuals in the city of São Paulo, regardless of sex and race. However, improvements are needed, particularly in relation to its use in younger patients.


Resumo Objetivo: Validar em indivíduos paulistas um modelo de aprendizado profundo (deep learning - DL) para estimativa da idade óssea, comparando-o com o método de Greulich e Pyle. Materiais e Métodos: Estudo transversal com radiografias de mão e punho para idade óssea. A análise manual foi feita por um radiologista experiente. Foi usado um modelo baseado em uma rede neural convolucional que ficou em terceiro lugar no desafio de 2017 da Radiological Society of North America. Calcularam-se o erro médio absoluto (mean absolute error - MAE) e a raiz do erro médio quadrado (root mean-square error - RMSE) do modelo contra o radiologista, com comparações entre sexo, etnia e idade. Resultados: A amostra compreendia 714 exames. Houve correlação entre ambos os métodos com coeficiente de determinação de 0,94. O MAE das predições foi 7,68 meses e a RMSE foi 10,27 meses. Não houve diferenças estatisticamente significantes entre sexos ou raças (p > 0,05). O algoritmo superestimou a idade óssea nos mais jovens (p = 0,001). Conclusão: O nosso algoritmo de DL demonstrou potencial para estimar a idade óssea em indivíduos paulistas, independentemente do sexo e da raça. Entretanto, há necessidade de aprimoramentos, particularmente em pacientes mais jovens.

6.
8.
Radiol Bras ; 56(5): 263-268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38204900

RESUMEN

Objective: To validate a deep learning (DL) model for bone age estimation in individuals in the city of São Paulo, comparing it with the Greulich and Pyle method. Materials and Methods: This was a cross-sectional study of hand and wrist radiographs obtained for the determination of bone age. The manual analysis was performed by an experienced radiologist. The model used was based on a convolutional neural network that placed third in the 2017 Radiological Society of North America challenge. The mean absolute error (MAE) and the root-mean-square error (RMSE) were calculated for the model versus the radiologist, with comparisons by sex, race, and age. Results: The sample comprised 714 examinations. There was a correlation between the two methods, with a coefficient of determination of 0.94. The MAE of the predictions was 7.68 months, and the RMSE was 10.27 months. There were no statistically significant differences between sexes or among races (p > 0.05). The algorithm overestimated bone age in younger individuals (p = 0.001). Conclusion: Our DL algorithm demonstrated potential for estimating bone age in individuals in the city of São Paulo, regardless of sex and race. However, improvements are needed, particularly in relation to its use in younger patients.


Objetivo: Validar em indivíduos paulistas um modelo de aprendizado profundo (deep learning - DL) para estimativa da idade óssea, comparando-o com o método de Greulich e Pyle. Materiais e Métodos: Estudo transversal com radiografias de mão e punho para idade óssea. A análise manual foi feita por um radiologista experiente. Foi usado um modelo baseado em uma rede neural convolucional que ficou em terceiro lugar no desafio de 2017 da Radiological Society of North America. Calcularam-se o erro médio absoluto (mean absolute error - MAE) e a raiz do erro médio quadrado (root mean-square error - RMSE) do modelo contra o radiologista, com comparações entre sexo, etnia e idade. Resultados: A amostra compreendia 714 exames. Houve correlação entre ambos os métodos com coeficiente de determinação de 0,94. O MAE das predições foi 7,68 meses e a RMSE foi 10,27 meses. Não houve diferenças estatisticamente significantes entre sexos ou raças (p > 0,05). O algoritmo superestimou a idade óssea nos mais jovens (p = 0,001). Conclusão: O nosso algoritmo de DL demonstrou potencial para estimar a idade óssea em indivíduos paulistas, independentemente do sexo e da raça. Entretanto, há necessidade de aprimoramentos, particularmente em pacientes mais jovens.

9.
J Pathol Inform ; 13: 100138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268059

RESUMEN

Digital pathology had a recent growth, stimulated by the implementation of digital whole slide images (WSIs) in clinical practice, and the pathology field faces shortage of pathologists in the last few years. This scenario created fronts of research applying artificial intelligence (AI) to help pathologists. One of them is the automated diagnosis, helping in the clinical decision support, increasing efficiency and quality of diagnosis. However, the complexity nature of the WSIs requires special treatments to create a reliable AI model for diagnosis. Therefore, we systematically reviewed the literature to analyze and discuss all the methods and results in AI in digital pathology performed in WSIs on H&E stain, investigating the capacity of AI as a diagnostic support tool for the pathologist in the routine real-world scenario. This review analyzes 26 studies, reporting in detail all the best methods to apply AI as a diagnostic tool, as well as the main limitations, and suggests new ideas to improve the AI field in digital pathology as a whole. We hope that this study could lead to a better use of AI as a diagnostic tool in pathology, helping future researchers in the development of new studies and projects.

13.
Radiol Bras ; 54(2): VII, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854271
14.
Radiol. bras ; Radiol. bras;54(2): 7-7, Jan.-Apr. 2021.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1155236
16.
PLoS One ; 16(2): e0245384, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33524039

RESUMEN

The new coronavirus, which began to be called SARS-CoV-2, is a single-stranded RNA beta coronavirus, initially identified in Wuhan (Hubei province, China) and currently spreading across six continents causing a considerable harm to patients, with no specific tools until now to provide prognostic outcomes. Thus, the aim of this study is to evaluate possible findings on chest CT of patients with signs and symptoms of respiratory syndromes and positive epidemiological factors for COVID-19 infection and to correlate them with the course of the disease. In this sense, it is also expected to develop specific machine learning algorithm for this purpose, through pulmonary segmentation, which can predict possible prognostic factors, through more accurate results. Our alternative hypothesis is that the machine learning model based on clinical, radiological and epidemiological data will be able to predict the severity prognosis of patients infected with COVID-19. We will perform a multicenter retrospective longitudinal study to obtain a large number of cases in a short period of time, for better study validation. Our convenience sample (at least 20 cases for each outcome) will be collected in each center considering the inclusion and exclusion criteria. We will evaluate patients who enter the hospital with clinical signs and symptoms of acute respiratory syndrome, from March to May 2020. We will include individuals with signs and symptoms of acute respiratory syndrome, with positive epidemiological history for COVID-19, who have performed a chest computed tomography. We will assess chest CT of these patients and to correlate them with the course of the disease. Primary outcomes:1) Time to hospital discharge; 2) Length of stay in the ICU; 3) orotracheal intubation;4) Development of Acute Respiratory Discomfort Syndrome. Secondary outcomes:1) Sepsis; 2) Hypotension or cardiocirculatory dysfunction requiring the prescription of vasopressors or inotropes; 3) Coagulopathy; 4) Acute Myocardial Infarction; 5) Acute Renal Insufficiency; 6) Death. We will use the AUC and F1-score of these algorithms as the main metrics, and we hope to identify algorithms capable of generalizing their results for each specified primary and secondary outcome.


Asunto(s)
Inteligencia Artificial , COVID-19/diagnóstico , COVID-19/patología , Aprendizaje Automático , Índice de Severidad de la Enfermedad , Algoritmos , Brasil , Humanos , Pronóstico , Tamaño de la Muestra
17.
Front Microbiol ; 10: 1527, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31338081

RESUMEN

The intimin protein is the major adhesin involved in the intimate adherence of atypical enteropathogenic Escherichia coli (aEPEC) strains to epithelial cells, but little is known about the structures involved in their early colonization process. A previous study demonstrated that the type III secretion system (T3SS) plays an additional role in the adherence of an Escherichia albertii strain. Therefore, we assumed that the T3SS could be related to the adherence efficiency of aEPEC during the first stages of contact with epithelial cells. To test this hypothesis, we examined the adherence of seven aEPEC strains and their eae (intimin) isogenic mutants in the standard HeLa adherence assay and observed that all wild-type strains were adherent while five isogenic eae mutants were not. The two eae mutant strains that remained adherent were then used to generate the eae/escN double mutants (encoding intimin and the T3SS ATPase, respectively) and after the adherence assay, we observed that one strain lost its adherence capacity. This suggested a role for the T3SS in the initial adherence steps of this strain. In addition, we demonstrated that this strain expressed the T3SS at significantly higher levels when compared to the other wild-type strains and that it produced longer translocon-filaments. Our findings reveal that the T3SS-translocon can play an additional role as an adhesin at the beginning of the colonization process of aEPEC.

18.
Front Microbiol, v. 10, 1527, jul. 2019
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2799

RESUMEN

The intimin protein is the major adhesin involved in the intimate adherence of atypicalenteropathogenicEscherichia coli(aEPEC) strains to epithelial cells, but little is knownabout the structures involved in their early colonization process. A previous studydemonstrated that the type III secretion system (T3SS) plays an additional role in theadherence of anEscherichia albertiistrain. Therefore, we assumed that the T3SS couldbe related to the adherence efficiency of aEPEC during the first stages of contactwith epithelial cells. To test this hypothesis, we examined the adherence of sevenaEPEC strains and theireae(intimin) isogenic mutants in the standard HeLa adherenceassay and observed that all wild-type strains were adherent while five isogeniceaemutants were not. The twoeaemutant strains that remained adherent were then usedto generate theeae/escNdouble mutants (encoding intimin and the T3SS ATPase,respectively) and after the adherence assay, we observed that one strain lost itsadherence capacity. This suggested a role for the T3SS in the initial adherence stepsof this strain. In addition, we demonstrated that this strain expressed the T3SS atsignificantly higher levels when compared to the other wild-type strains and that itproduced longer translocon-filaments. Our findings reveal that the T3SS-transloconcan play an additional role as an adhesin at the beginning of the colonization processof aEPEC.

19.
Radiol Res Pract ; 2016: 9592721, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27034831

RESUMEN

The aim of this study was to develop a diagnostic tool capable of providing diffusion and apparent diffusion coefficient (ADC) map information in a single color-coded image and to assess the performance of color-coded images compared with their corresponding diffusion and ADC map. The institutional review board approved this retrospective study, which sequentially enrolled 36 head MRI scans. Diffusion-weighted images (DWI) and ADC maps were compared to their corresponding color-coded images. Four raters had their interobserver agreement measured for both conventional (DWI) and color-coded images. Differences between conventional and color-coded images were also estimated for each of the 4 raters. Cohen's kappa and percent agreement were used. Also, paired-samples t-test was used to compare reading time for rater 1. Conventional and color-coded images had substantial or almost perfect agreement for all raters. Mean reading time of rater 1 was 47.4 seconds for DWI and 27.9 seconds for color-coded images (P = .00007). These findings are important because they support the role of color-coded images as being equivalent to that of the conventional DWI in terms of diagnostic capability. Reduction in reading time (which makes the reading easier) is also demonstrated for one rater in this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA