Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39202869

RESUMEN

Nowadays, biodegradable metals and alloys, as well as their corrosion behavior, are of particular interest. The corrosion process of metals and alloys under various harsh conditions can be studied via the investigation of corrosion atom adsorption on metal surfaces. This can be performed using density functional theory-based simulations. Importantly, comprehensive analytical data obtained in simulations including parameters such as adsorption energy, the amount of charge transferred, atomic coordinates, etc., can be utilized in machine learning models to predict corrosion behavior, adsorption ability, catalytic activity, etc., of metals and alloys. In this work, data on the corrosion indicators of Zn surfaces in Cl-, S-, and O-rich harsh environments are collected. A dataset containing adsorption height, adsorption energy, partial density of states, work function values, and electronic charges of individual atoms is presented. In addition, based on these corrosion descriptors, it is found that a Cl-rich environment is less harmful for different Zn surfaces compared to an O-rich environment, and more harmful compared to a S-rich environment.

2.
Nanoscale ; 16(20): 10030-10037, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38711346

RESUMEN

Density functional theory-based simulations are applied to study the electronic structures, carrier masses, carrier mobility and carrier relaxation times in bulk and two-dimensional (2D) Zn2(V,Nb,Ta)N3 ternary nitrides. Bulk Zn2(V,Nb,Ta)N3 possess moderate band gap sizes of 2.17 eV, 3.11 eV, and 3.40 eV, respectively. Two-dimensional Zn2(V,Nb,Ta)N3 have slightly higher band gap sizes of 2.77 eV, 3.33 eV, and 3.23 eV, respectively. Carrier mass, carrier mobility and carrier relaxation time are found to be anisotropic in all the studied structures. Bulk and 2D samples show an order of magnitude higher electron mobility compared to hole mobility. The highest electron mobility in bulk Zn2NbN3 and Zn2TaN3 is about ∼103 cm2 V-1 s-1. Importantly, for 2D Zn2NbN3, an abnormally high electron mobility of 1.67 × 104 cm2 V-1 s-1 is observed, which is not inferior to the highest known electron mobility values in 2D materials. Such a high electron mobility in 2D Zn2NbN3 can be attributed to a strong delocalization of the conduction band minimum, which is responsible for electron transport. Therefore, this work opens up new materials for high performance nanodevices, such as tandem solar cells and field-effect transistors. This study also provides deep physical insights into the nature of carrier transport mechanisms in bulk and 2D Zn2(V,Nb,Ta)N3 ternary nitrides.

3.
Phys Chem Chem Phys ; 26(18): 13719-13730, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38669029

RESUMEN

The search for promising carrier blocking layer materials with high stability, including resistance to surface inhibition by environmental molecules that cause a drop in carrier mobility, is critical for the production of tandem solar cells. Based on density functional theory calculations, the reaction of atmospheric gases, including N2, CO2, NH3, NO, and NO2, with three promising Zn2(V, Nb, Ta)N3 monolayers is discovered. The results suggest the chemical adsorption of NH3 and physical adsorption of NO and NO2. In addition, the Zn2(V, Nb, Ta)N3 monolayers are characterized by a weak bonding with N2 and CO2. Charge redistribution is found at the interface between the monolayers and NH3, NO and NO2 molecules, leading to the formation of a local surface dipole that affects the functionality of the Zn2(V, Nb, Ta)N3 monolayers. The Zn2VN3 monolayer is less reactive with atmospheric gases and thus is the most promising for application in tandem solar cells. Notably, the revealed nontrivial behavior of the Zn2(V, Nb, Ta)N3 monolayers towards N-containing gases makes them promising for application in gas sensing. Specifically, the Zn2TaN3 monolayer is the most promising for application in molecular sensing due to its high reversibility and distinguished interaction with NH3, NO, and NO2 gases.

4.
J Phys Chem Lett ; 14(49): 11134-11141, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38052040

RESUMEN

A new family of ternary nitride materials, Zn2(V, Nb, Ta)N3 monolayers, is predicted. A fabrication mechanism of the Zn2(V, Nb, Ta)N3 monolayers is proposed based on the chemical vapor deposition approach used for their bulk counterparts. The calculations show that these monolayers are thermodynamically and environmentally stable and that the Zn2VN3 monolayer is the most stable and the easiest to synthesize. The Zn2VN3 monolayer also has the highest strength and elasticity. The Zn2(V, Nb, Ta)N3 monolayers are semiconductors with nearly equal direct and indirect band gaps. Considering optoelectronic properties, the predicted monolayers are transparent to the visible light and provide shielding in the ultraviolet region. Thus, the predicted Zn2(V, Nb, Ta)N3 monolayers are promising for applications in LED devices and as blocking layers in tandem solar cells.

5.
J Chem Inf Model ; 63(20): 6212-6223, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37796976

RESUMEN

Two-dimensional (2D) semiconductors are central to many scientific fields. The combination of two semiconductors (heterostructure) is a good way to lift many technological deadlocks. Although ab initio calculations are useful to study physical properties of these composites, their application is limited to few heterostructure samples. Herein, we use machine learning to predict key characteristics of 2D materials to select relevant candidates for heterostructure building. First, a label space is created with engineered labels relating to atomic charge and ion spatial distribution. Then, a meta-estimator is designed to predict label values of heterostructure samples having a defined band alignment (descriptor). To this end, independently trained k-nearest neighbors (KNN) regression models are combined to boost the regression. Then, swarm intelligence principles are used, along with the boosted estimator's results, to further refine the regression. This new "swarm smart" algorithm is a powerful and versatile tool to select, among experimentally existing, computationally studied, and not yet discovered van der Waals heterostructures, the most likely candidate materials to face the scientific challenges ahead.


Asunto(s)
Algoritmos , Aprendizaje Automático , Análisis por Conglomerados
6.
Phys Chem Chem Phys ; 25(35): 24060-24068, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37655455

RESUMEN

To control the nitriding effect, which is used to enhance the mechanical properties of surfaces, a fundamental understanding of this effect is required. Modern quantum-mechanical simulation methods make it almost impossible to perform cost effective and reliable studies on the mechanisms of the influence of nitrogen on surfaces. In this work, based on density functional theory calculations, the nitriding effect on the structure and mechanical properties of titanized steel was studied using a FeTi model. Two cases of the nitrogen presence in the Fe-Ti crystal are considered: uniform distribution and nitrogen clustering. Based on the formation energy calculations and the crystal orbital Hamilton population analysis, it is found that higher stability of FeTi is achieved at low concentrations of nitrogen up to 5.4% when nitrogen atoms are uniformly distributed, while upon clustering of nitrogen, FeTi becomes more stable at higher concentrations of nitrogen from 3.7% to 7.4%. The mechanical properties of nitrogen-containing FeTi suggest that Young's modulus and shear modulus increase with an increase of the concentration of nitrogen up to 5.4%. These findings not only deepen our fundamental understanding of the nitriding effect in titanized Fe-based steels but also offer valuable insights essential for carrying out an experimental study of various end products such as technical machine parts or medical implants, endowed with improved surface properties.

7.
J Phys Chem Lett ; 14(15): 3691-3697, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37037010

RESUMEN

To date, vibrational simulation results constitute more of an experimental support than a predictive tool, as the simulated vibrational modes are discrete due to quantization. This is different from what is obtained experimentally. Here, we propose a way to combine outputs such as the phonon density of states surrogate and peak intensities obtained from ab initio simulations to allow comparison with experimental data by using machine learning. This work is paving the way for using simulated vibrational spectra as a tool to identify materials with defined stoichiometry, enabling the separation of genuine vibrational features of pure phases from morphological and defect-induced signals.

8.
J Phys Chem Lett ; 14(5): 1148-1155, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36705575

RESUMEN

A two-dimensional (2D) monolayer of a novel ternary nitride Zn2VN3 is computationally designed, and its dynamical and thermal stability is demonstrated. A synthesis strategy is proposed based on experimental works on production of ternary nitride thin films, calculations of formation and exfoliation energies, and ab initio molecular dynamics simulations. A comprehensive characterization of 2D Zn2VN3, including investigation of its optoelectronic and mechanical properties, is conducted. It is shown that 2D Zn2VN3 is a semiconductor with an indirect band gap of 2.75 eV and a high work function of 5.27 eV. Its light absorption covers visible and ultraviolet regions. The band gap of 2D Zn2VN3 is found to be well tunable by applied strain. At the same time 2D Zn2VN3 possesses high stability against mechanical loads, point defects, and environmental impacts. Considering the unique properties found for 2D Zn2VN3, it can be used for application in optoelectronic and straintronic nanodevices.

9.
NPJ 2D Mater Appl ; 7(1): 48, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665483

RESUMEN

Current progress in two-dimensional (2D) materials explorations leads to constant specie enrichments of possible advanced materials down to two dimensions. The metal chalcogenide-based 2D materials are promising grounds where many adjacent territories are waiting to be explored. Here, a stable monolayer Ni3TeO6 (NTO) structure was computationally predicted and its stacked 2D nanosheets experimentally synthesized. Theoretical design undergoes featuring coordination of metalloid chalcogen, slicing the bulk structure, geometrical optimizations and stability study. The predicted layered NTO structure is realized in nanometer-thick nanosheets via a one-pot shape-controlled hydrothermal synthesis. Compared to the bulk, the 2D NTO own a lowered bandgap energy, more sensitive wavelength selectivity and an emerging photocatalytic hydrogen evolution ability under visible light. Beside a new 2D NTO with the optoelectrical and photocatalytic merits, its existing polar space group, structural specification, and design route are hoped to benefit 2D semiconductor innovations both in species enrichment and future applications.

10.
J Colloid Interface Sci ; 628(Pt B): 398-406, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998464

RESUMEN

Cobalt-based hydroxide are ideal candidates for the oxygen evolution reaction. Herein, we use molybdenum oxide nanorods as sacrificial templates to construct a self-supporting molybdenum-doped cobalt hydroxide nanosheet hierarchical microtubule structure based on a structural engineering strategy to improve the active area of the catalyst. X-ray-based spectroscopic tests revealed that Mo (VI) with tetrahedral coordination intercalated into the interlayer of cobalt hydroxide, promoting interlayer separation. At the same time, Mo is connected with Co through oxygen bonds, which promotes the transfer of Co charges to Mo and reduces the electron cloud density of Co ions. In 1 M KOH, optimized molybdenum-doped cobalt hydroxide nanosheet microtubules only needs an overpotential of 288 mV to drive a current density of 10 mA cm-2, which is significantly better than that of pure Co(OH)2 nanosheets and RuO2. Structural engineering and electronic state regulation can effectively improve the oxygen evolution activity of cobalt-based hydroxide, which provides a design idea for the development of efficient oxygen evolution catalysts.


Asunto(s)
Molibdeno , Oxígeno , Oxígeno/química , Hidróxidos/química , Cobalto/química , Electrónica , Óxidos , Microtúbulos
11.
Nanoscale ; 14(24): 8601-8610, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35543218

RESUMEN

Direct sunlight-induced water splitting for photocatalytic hydrogen evolution is the dream for an ultimate clean energy source. So far, typical photocatalysts require complicated synthetic processes and barely work without additives or electrolytes. Here, we report the realization of a hydrogen evolution strategy with a novel Ni-Ag-MoS2 ternary nanocatalyst under visible/sun light. Synthesized through an ultrasound-assisted wet method, the composite exhibits stable catalytic activity for long-term hydrogen production from both pure and natural water. A high efficiency of 73 µmol g-1 W-1 h-1 is achieved with only a visible light source and the (MoS2)84Ag10Ni6 catalyst, matching the values of present additive-enriched photocatalysts. Verified by experimental characterizations and first-principles calculations, the enhanced photocatalytic ability is attributed to effective charge migration through the dangling bonds at the Ni-Ag-MoS2 alloy interface and the activation of the MoS2 basal planes.

12.
J Phys Chem C Nanomater Interfaces ; 126(14): 6196-6206, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35449521

RESUMEN

Reactive magnesium oxide (MgO)-based cement (RMC) can play a key role in carbon capture processes. However, knowledge on the driving forces that control the degree of carbonation and hydration and rate of reactions in this system remains limited. In this work, density functional theory-based simulations are used to investigate the physical nature of the reactions taking place during the fabrication of RMCs under ambient conditions. Parametric indicators such as adsorption energies, charge transfer, electron localization function, adsorption/dissociation energy barriers, and the mechanisms of interaction of H2O and CO2 molecules with MgO and brucite (Mg(OH)2) clusters are considered. The following hydration and carbonation interactions relevant to RMCs are evaluated: (i) carbonation of MgO, (ii) hydration of MgO, carbonation of hydrated MgO, (iii) carbonation of Mg(OH)2, (iv) hydration of Mg(OH)2, and (v) hydration of carbonated Mg(OH)2. A comparison of the energy barriers and reaction pathways of these mechanisms shows that the carbonation of MgO is hindered by the presence of H2O molecules, while the carbonation of Mg(OH)2 is hindered by the formation of initial carbonate and hydrate layers as well as presence of excessed H2O molecules. To compare these finding to bulk mineral surfaces, the interactions of the CO2 and H2O molecules with the MgO(001) and Mg(OH)2 (001) surfaces are studied. Therefore, this work presents deep insights into the physical nature of the reactions and the mechanisms involved in hydrated magnesium carbonates production that can be beneficial for its development.

13.
J Phys Chem Lett ; 13(9): 2165-2172, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35227061

RESUMEN

A large number of novel two-dimensional (2D) materials are constantly being discovered and deposited in databases. Consolidated implementation of machine learning algorithms and density functional theory (DFT)-based predictions have allowed the creation of several databases containing an unimaginable number of 2D samples. As the next step in this chain, the investigation leads to a comprehensive study of the functionality of the invented materials. In this work, a family of transition metal dichlorides have been screened out for systematic investigation of their structural stability, fundamental properties, structural defects, and environmental stability via DFT-based calculations. The work highlights the importance of using the potential of the invented materials and proposes a comprehensive characterization of a new family of 2D materials.

14.
Phys Chem Chem Phys ; 24(3): 1456-1461, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985487

RESUMEN

Non-metallic inclusions play a decisive role in the steel's performance. Therefore, their determination and control over their formation are crucial to engineer ultra-high-strength steel. Currently, bare experimental approaches are limited in the identification of non-metallic inclusions within microstructural phases of complex steel matrices. Herein, we performed a density functional theory study on the characteristics of different nitride inclusions as observed in spectro-microscopy studies. As per the simulations, TiN inclusions preferentially formed in the austenite matrix, while the ferrite matrix generally hosts BN inclusions. Furthermore, although the presence of both BN and TiN inclusions in the Fe3C matrix is possible, their formation is impeded because of the strong inclusion-carbon interactions. The observed regularity in the formation of nitride inclusions in different phases of steel was also confirmed by the comparison of simulated and experimental K-edge XAS spectrum of nitride inclusions. Our work shed the light on the formation of nitride inclusions in different steel matrices and facilitates their further experimental identification.

15.
J Phys Chem Lett ; 12(13): 3436-3442, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33789049

RESUMEN

The existence of two novel hybrid two-dimensional (2D) monolayers, 2D B3C2P3 and 2D B2C4P2, has been predicted based on the density functional theory calculations. It has been shown that these materials possess structural and thermodynamic stability. 2D B3C2P3 is a moderate band gap semiconductor, while 2D B2C4P2 is a zero band gap semiconductor. It has also been shown that 2D B3C2P3 has a highly tunable band gap under the effect of strain and substrate engineering. Moreover, 2D B3C2P3 produces low barriers for dissociation of water and hydrogen molecules on its surface, and shows fast recovery after desorption of the molecules. The novel materials can be fabricated by carbon doping of boron phosphide and directly by arc discharge and laser ablation and vaporization. Applications of 2D B3C2P3 in renewable energy and straintronic nanodevices have been proposed.

16.
J Phys Condens Matter ; 33(13)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33429368

RESUMEN

Density functional theory based computational study has been conducted in order to investigate the effect of substitution of Cr and Co components by Si on the structure, mechanical, electronic, and magnetic properties of the high entropy alloy CrCoNiFe. It is found that the presence of a moderate concentration of Si substitutes (up to 12.5%) does not significantly reduce the structural and mechanical stability of CrCoNiFe while it may modify its electronic and magnetic properties. Based on that, Si is proposed as a cheap and functional material for partial substitution of Cr or Co in CrCoNiFe.

17.
J Phys Chem Lett ; 12(1): 620-626, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33382627

RESUMEN

Defects are inevitably present in two-dimensional (2D) materials and usually govern their various properties. Here, a comprehensive density functional theory-based investigation of seven kinds of point defects in a recently produced γ allotrope of 2D phosphorus carbide (γ-PC) is conducted. The defects, such as antisites, single C or P, and double C and P and C and C vacancies, are found to be stable in γ-PC, while the Stone-Wales defect is not presented in γ-PC due to its transition-metal dichalcogenides-like structure. The formation energies, stability, and surface density of the considered defect species as well as their influence on the electronic structure of γ-PC is systematically identified. The formation of point defects in γ-PC is found to be less energetically favorable than in graphene, phosphorene, and MoS2. Meanwhile, defects can significantly modulate the electronic structure of γ-PC by inducing hole/electron doping. The predicted scanning tunneling microscopy images suggest that most of the point defects are easy to distinguish from each other and that they can be easily recognized in experiments.

18.
Phys Chem Chem Phys ; 22(20): 11307-11313, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32400830

RESUMEN

The recently fabricated two-dimensional phosphorus carbide (PC) has been proposed for application in different nanodevices such as nanoantennas and field-effect transistors. However, the effect of ambient molecules on the properties of PC and, hence, the productivity of PC-based devices is still unknown. Herein a first-principles investigation is performed to study the most structurally stable α- and ß-PC allotropes upon their interaction with environmental molecules, including NH3, NO, NO2, H2O, and O2. It is predicted that NH3, H2O, and O2 are physisorbed on α- and ß-PC while NO and NO2 may easily form a covalent bond with the PC. Importantly, NO and NO2 possess low adsorption energies on PC which compared to these on graphene and phosphorene. Moreover, both molecules are strong acceptors to PC with a giant charge transfer of ∼1 e per molecule. For all the considered molecules PC is found to be more sensitive compared to graphene and phosphorene. The present work provides useful insight into the effects of environmental molecules on the structure and electronic properties of α- and ß-PC, which may be important for their manufacturing, storage, and application in gas sensors and electronic devices.

19.
Chemphyschem ; 20(4): 575-580, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30556634

RESUMEN

Arsenene, a new group-V two-dimensional (2D) semiconducting material beyond phosphorene and antimonene, has recently gained an increasing attention owning to its various interesting properties which can be altered or intentionally functionalized by chemical reactions with various molecules. This work provides a systematic study on the interactions of arsenene with the small molecules, including H2 , NH3 , O2 , H2 O, NO, and NO2 . It is predicted that O2 , H2 O, NO, and NO2 are strong acceptors, while NH3 serves as a donor. Importantly, it is shown a negligible charge transfer between H2 and arsenene which is ten times lower than that between H2 and phosphorene and about thousand times lower than that between H2 and InSe and antimonene. The calculated energy barrier for O2 splitting on arsenene is found to be as low as 0.67 eV. Thus, pristine arsenene may easily oxidize in ambient conditions as other group V 2D materials. On the other hand, the acceptor role of H2 O on arsenene, similarly to the cases of antimonene and InSe, may help to prevent the proton transfer between H2 O and O- species by forming acids, which suppresses further structural degradation of arsenene. The structural decomposition of the 2D layers upon interaction with the environment may be avoided due to the acceptor role of H2 O molecules as the study predicts from the comparison of common group V 2D materials. However, the protection for arsenene is still required due to its strong interaction with other small environmental molecules. The present work renders the possible ways to protect arsenene from structure degradation and to modulate its electronic properties, which is useful for the material synthesis, storage and applications.

20.
Phys Chem Chem Phys ; 20(18): 12939-12947, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29701216

RESUMEN

By using first-principles calculations, we investigated the effects of graphene/boron nitride (BN) encapsulation, and surface functionalization by metallic elements (K, Al, Mg and typical transition metals) and molecules (tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE)) on the electronic properties of layered indium selenide (InSe). It was found that an opposite trend of charge transfer is possible for graphene (donor) and BN (acceptor), which is dramatically different from phosphorene where both graphene and BN play the same role (donor). For an InSe/BN heterostructure, a change of the interlayer distance due to out-of-plane compression can effectively modulate the band gap. Strong acceptor abilities to InSe were found for the TCNE and TCNQ molecules. For K, Al and Mg-doped monolayer InSe, charge transfer from the K and Al atoms to the InSe surface was observed, causing an n-type conduction of InSe, while p-type conduction of InSe was observed in the case of Mg-doping. The atomically thin structure of InSe enables the possible observation and utilization of the dopant-induced vertical electric field across the interface. A proper adoption of the n- or p-type dopants allows for the modulation of the work function, the Fermi level pinning, the band bending, and the photo-adsorbing efficiency near the InSe surface/interface. Investigation of the adsorption of transition metal atoms on InSe showed that Ti-, V-, Cr-, Mn-, and Co-adsorbed InSe are spin-polarized, while Ni-, Cu-, Pd-, Ag- and Au-adsorbed InSe are non-spin-polarized. Our results shed light on the possible ways to protect InSe structures and modulate their electronic properties for nanoelectronics and electrochemical device applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA