Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 16753, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224197

RESUMEN

Multi-MeV high-purity proton acceleration by using a hydrogen cluster target irradiated with repetitive, relativistic intensity laser pulses has been demonstrated. Statistical analysis of hundreds of data sets highlights the existence of markedly high energy protons produced from the laser-irradiated clusters with micron-scale diameters. The spatial distribution of the accelerated protons is found to be anisotropic, where the higher energy protons are preferentially accelerated along the laser propagation direction due to the relativistic effect. These features are supported by three-dimensional (3D) particle-in-cell (PIC) simulations, which show that directional, higher energy protons are generated via the anisotropic ambipolar expansion of the micron-scale clusters. The number of protons accelerating along the laser propagation direction is found to be as high as 1.6 [Formula: see text] [Formula: see text] 10[Formula: see text]/MeV/sr/shot with an energy of 2.8 [Formula: see text] MeV, indicating that laser-driven proton acceleration using the micron-scale hydrogen clusters is promising as a compact, repetitive, multi-MeV high-purity proton source for various applications.

2.
Phys Rev E ; 100(1-1): 013203, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31499930

RESUMEN

The dynamics of the boundary layer in between two distinct collisionless plasmas created by the interaction between a dense object modeling a cluster and a short laser pulse in the presence of an ambient gas is studied with two dimensional relativistic particle-in-cell simulations, which are found to be described by three successive processes. In the first phase, a collisionless electrostatic shock wave, launched near the cluster expansion front, reflects the ambient gas ions at a contact surface as a moving wall, which allows a particle acceleration with a narrower energy spread. In the second phase, the contact surface disappears and the compressed surface of the ambient gas ions passes over the shock potential, forming an overlapping region between the cluster expansion front and the compressed surface of the ambient gas. Here, another type of nonlinear wave is found to be evolved, leading to a relaxation of the shock structure, while continuing to reflect the ambient gas ions. The nonlinear wave exhibits a bipolar electric field structure that is sustained for a long timescale coupled with slowly evolving ion dynamics, suggesting that a quasistationary kinetic equilibrium dominated by electron vortices in the phase space is established. In the third phase, a rarefaction wave is triggered and evolves at the compressed surface of ambient gas. This is because some of the ambient gas ions tend to pass over the potential of the bipolar electric field. Simultaneously, a staircase structure, i.e., a kind of internal shock, is formed in the cluster due to the deceleration of cluster ions. Such structure formations and successive dynamics accompanied by the transitions from the shock wave phase through the overlapping phase to the rarefaction wave phase are considered to be a unique nature at the boundary layer created by an explosion of a dense plasma object in an ambient dilute plasma.

3.
Phys Rev Lett ; 122(1): 014804, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31012641

RESUMEN

An approach for accelerating a quasimonoenergetic proton bunch via a hemispherically converging collisionless shock created in laser-cluster interactions at the relativistically induced transparency (RIT) regime is studied using three-dimensional particle-in-cell simulations. By the action of focusing a petawatt class laser pulse onto a micron-size spherical hydrogen cluster, a crescent-shaped collisionless shock is launched at the laser-irradiated hemisphere and propagates inward. The shock converges at the sphere center in concurrence with the onset of the RIT, thereby allowing the proton bunch to be pushed out from the shock surface in the laser propagation direction. The proton bunch experiences further acceleration both inside and outside of the cluster to finally exhibit a quasimonoenergetic spectral peak around 300 MeV while maintaining a narrow energy spread (∼10%) and a small half-divergence angle (∼5°) via the effect of the RIT. This mechanism works for finite ranges of parameters with threshold values concerning the laser peak intensity and the cluster radius, resulting from the synchronization of the multiple processes in a self-consistent manner. The present scheme utilizing the internal and external degrees of freedom ascribed to the spherical cluster leads to the proton bunch alternative to the plain target, which allows the operation with a high repetition rate and impurity free.

4.
J Thorac Cardiovasc Surg ; 150(3): 645-54.e3, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26095621

RESUMEN

OBJECTIVE: The pathogenesis of pulmonary arterial hypertension (PAH) involves reactive oxygen species and inflammation. Beneficial effects of molecular hydrogen, which exerts both anti-inflammatory and antioxidative effects, have been reported for various pathologic conditions. We therefore hypothesized that molecular hydrogen would improve monocrotaline (MCT)-induced PAH in rats. METHODS: Nineteen male Sprague-Dawley rats (body weight: 200-300 g) were divided into groups, receiving: (1) MCT + hydrogen-saturated water (group H); (2) MCT + dehydrogenized water (group M); or (3) saline + dehydrogenized water (group C). Sixteen days after substance administration, we evaluated hemodynamics, harvested the lungs and heart, and performed morphometric analysis of the pulmonary vasculature. Macrophage infiltration, antiproliferating cell nuclear antigen-positive cells, 8-hydroxy-deoxyguanosine (8-OHdG)-positive cells, and expressions of phosphorylated signal transducers and activators of transcription-3 (STAT3) and nuclear factor of activated T-cells (NFAT) were evaluated immunohistochemically. Stromal cell-derived factor-1 and monocyte chemoattractant protein-1 expressions were evaluated by quantitative reverse-transcription polymerase chain reaction. RESULTS: Pulmonary arterial hypertension was significantly exacerbated in group M compared to group C, but was significantly improved in group H. Vascular density was significantly reduced in group M, but not in group H. Adventitial macrophages, antiproliferating cell nuclear antigen - and 8-OHdG-positive cells, and stromal cell-derived factor-1 and monocyte chemoattractant protein-1 expressions were significantly increased in group M, but improved in group H. Expressions of phosphorylated STAT3 and NFAT were up-regulated in group M, but improved in group H. CONCLUSIONS: Molecular hydrogen ameliorates MCT-induced PAH in rats by suppressing macrophage accumulation, reducing oxidative stress and modulating the STAT3/NFAT axis.


Asunto(s)
Antiinflamatorios/farmacología , Antihipertensivos/farmacología , Antioxidantes/farmacología , Hidrógeno/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Arteria Pulmonar/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Masculino , Monocrotalina , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Factores de Transcripción NFATC/metabolismo , Fosforilación , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos
5.
Phys Rev Lett ; 115(26): 269902, 2015 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-26765036

RESUMEN

Retraction of DOI: 10.1103/PhysRevLett.112.035002.

6.
Phys Rev Lett ; 112(3): 035002, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24484146

RESUMEN

We have developed a new formula for a relativistic ponderomotive force of transversely localized laser fields based on the noncanonical Lie perturbation method by finding proper coordinates and gauges in the variational principle. The formula involves new terms represented by second and third spatial derivatives of the field amplitude, so that the ponderomotive force depends not only on the local field gradient, but also on the curvature and its variation. The formula is then applicable to a regime in which the conventional formula is hardly applied such that nonlocal and/or global extent of the field profile becomes important. The result can provide a theoretical basis for describing nonlinear laser-plasma interaction including such nonlocal effects, which is examined via particle-in-cell simulation of laser propagation in a plasma with a super Gaussian transverse field profile.

8.
Rev Sci Instrum ; 82(11): 113509, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22128977

RESUMEN

In magnetized plasmas, the presence of a significant number of energetic electrons has been observed but quantitative characteristics of these electrons are proving difficult to investigate. A Langmuir probe offers a means to provide quantitative measurement of these energetic electrons that takes into account electron emissions (secondary electron emission and electron reflection) from the probe tips and sheath expansion around the probe tips caused by a considerable negative potential. In this paper, these effects are experimentally confirmed and an analytical means to measure energetic electron characteristics are proposed. An analysis of plasmas produced by a high frequency wave is then applied leading to the successful detection of an asymmetric flow of energetic electrons. The estimated electron temperature and current density were approximately 4-5 keV and 2-3 kA/m(2).

9.
Phys Rev Lett ; 105(7): 075004, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20868054

RESUMEN

A three-dimensional simulation of laser-guided discharges based on percolation is presented. The model includes both local growth of a streamer due to the enhanced electric field at the streamer's tip and propagation of a leader by remote ionization such as that caused by runaway electrons. The stochastic behavior of the discharge through a preformed plasma channel is reproduced by the calculation, which shows complex path with detouring and bifurcation. The probability of guiding is investigated with respect to the ionized, conductive fraction along the channel.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(1 Pt 2): 016406, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17677578

RESUMEN

We discuss some aspects of interactions of high-frequency electromagnetic waves with plasmas, assuming that the intensity of radiation is sufficiently large, so that the photon-photon interaction is more likely than the photon-plasma particle interaction. In the stationary limit, solving the kinetic equation of the photon gas, we derive a distribution function. With this distribution function at hand, we investigate the adiabatic photon self-capture and obtain the number density of the trapped photons. We employ the distribution function to calculate the thermodynamic quantities for the photon gas. Having expressions of the entropy and the pressure of the photon gas, we define the heat capacities and exhibit the existence of the ratio of the specific heats Gamma , which equals 7/6 for nonrelativistic temperatures. In addition, we disclose the magnitude of the mean square fluctuation of the number of photons. Finally, we discuss the uniform expansion of the photon gas.

11.
Phys Rev Lett ; 89(20): 205002, 2002 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-12443483

RESUMEN

The new nonlinear destabilization process is found in the nonlinear phase of the double tearing mode (DTM). This process causes the abrupt growth of DTM and subsequent collapse after long-time-scale evolution in the Rutherford-type regime. The nonlinear growth of the DTM is triggered when the triangular deformation of magnetic islands with sharp current point at the X point exceeds a certain value. Hence, the mode can be called the structure-driven one. Decreasing the resistivity increases the sharpness of the triangularity and the spontaneous growth rate in the abrupt-growth phase is almost independent of the resistivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA