Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(36): 12934-12947, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37646311

RESUMEN

In this study, pyridine and phenanthroline diphosphonate ligands were investigated for the first time from the context of solvent extraction and potentiometric sensing of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) cations. The extraction efficiency under the same conditions for phenanthroline-diphosphonates is considerably higher than that for pyridine ligands. At the same time, the pyridine-diphosphonates show pronounced selectivity towards lead in this metal series. The extraction systems with phenanthroline diphosphonates provided the most efficient extraction of Cd(II) and Pb(II) cations (D > 90). The newly developed pyridine and phenanthroline diphosphonate ligands have proven to be highly effective components in plasticized polymeric membranes. These ligands can be utilized to construct potentiometric ion sensors that exhibit a notable response specifically towards Pb(II) cations. Among the previously reported tetradentate ligands, the phenanthroline diphosphonate ligand, when incorporated into plasticized polymeric membranes, demonstrated the highest sensitivity towards d-metals and Pb(II). The structure of the single crystal complex of Pb(II) and Cd(II) with pyridine-diphosphonates was studied by X-ray diffraction analysis (XRD). The geometry of Cu(II), Zn(II), Cd(II) and Pb(II) complexes and the energy effect of the complex formation, including pseudo-oligomerization reactions, were determined by DFT calculations. The high sensing and extraction efficiency of diphosphonates with respect to Pb(II) is consistent with the minimum values of complex formation energies. The variation in sensory and extraction properties observed among the studied diphosphonate ligands is influenced by the ability to form polynuclear complexes with Pb(II) cations, whereas such properties are absent in the case of Cd(II) cations.

2.
Molecules ; 28(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36770765

RESUMEN

The provenance study of archaeological materials is an important step in understanding the cultural and economic life of ancient human communities. One of the most popular approaches in provenance studies is to obtain the chemical composition of material and process it with chemometric methods. In this paper, we describe a combination of the total-reflection X-ray fluorescence (TXRF) method and chemometric techniques (PCA, k-means cluster analysis, and SVM) to study Neolithic ceramic samples from eastern Siberia (Baikal region). A database of ceramic samples was created and included 10 elements/indicators for classification by geographical origin and ornamentation type. This study shows that PCA cannot be used as the primary method for provenance purposes, but can show some patterns in the data. SVM and k-means cluster analysis classified most of the ceramic samples by archaeological site and type with high accuracy. The application of chemometric techniques also showed the similarity of some samples found at sites located close to each other. A database created and processed by SVM or k-means cluster analysis methods can be supplemented with new samples and automatically classified.

3.
Anal Sci ; 36(12): 1467-1471, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-32801287

RESUMEN

Heparin is an anticoagulant medication that is usually injected subcutaneously. The quality of a set of commercial heparin injections from different producers was examined by NMR, IR, UV-Vis spectroscopies and potentiometric multisensor system. The type of raw material regarding heparin animal origin and producer, heparin molecular weight and activity values were derived based on the non-targeted analysis of 1H NMR fingerprints. DOSY NMR spectroscopy was additionally used to study homogeneity and additives profile. UV-Vis and IR, being cheaper than NMR, combined with multivariate statistics were successfully applied to study excipients composition as well as semi-estimation of activity values. Potentiometric multisensor measurements were found to be an important additional source of information about inorganic composition of finished heparin formulations. All investigated instrumental techniques are useful for finished heparin injections and should be selected according to availability as well as the information and confidence required for a specific sample.


Asunto(s)
Heparina/administración & dosificación , Composición de Medicamentos , Heparina/química , Inyecciones , Control de Calidad
4.
J Pharm Biomed Anal ; 188: 113457, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32663766

RESUMEN

Fast and inexpensive analytical tools for identification of the origin of pharmaceutical formulations are important to ensure consumers safety. This study explores the potential of potentiometric multisensor systems ("electronic tongues") in this type of application. 72 paracetamol samples purchased in different countries and produced by various companies were studied via infrared spectroscopy (IR), near infrared spectroscopy (NIR), nuclear magnetic resonance spectroscopy (NMR) and multisensor system (ET). A variety of chemometric tools was applied to explore and compare the information yielded by these methods. It was found that ET is capable of distinguishing paracetamol formulations from different producers. The chemical information derived from potentiometric sensor responses has something in common with that derived from NIR and IR; however, it is orthogonal to that from NMR. ET can be a valuable tool in express quality assessment of drugs.


Asunto(s)
Acetaminofén , Nariz Electrónica , Composición de Medicamentos , Potenciometría , Espectroscopía Infrarroja Corta , Lengua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA