Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
MethodsX ; 9: 101668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392103

RESUMEN

Three-dimensional numerical simulation of circulation in fjords hosting marine-terminating ice shelves is challenging because of the complexity of processes involved in such environments. This often requires a comprehensive model setup. The following elements are needed: bathymetry (usually unknown beneath the glacier tongue), ice shelf draft (impacting water column thickness), oceanographic state (including tidal elevation, salinity, temperature and velocity of the water masses), sea ice and atmospheric forcing. Moreover, a high spatial resolution is needed, at least locally, which may be augmented with a coarser and computationally cheaper (nested) model that provides sufficiently realistic conditions at the boundaries. Here, we describe procedures to systematically create such a setup that uses the Finite Volume Community Ocean Model (FVCOM) for the Petermann Fjord, Northwest Greenland. The first simulations are validated against temperature and salinity observations from the Petermann Fjord in September 2019. We provide•Complete bathymetry, ice-draft and water column thickness datasets of the Petermann Fjord, with an improved representation of the topography underneath the glacier tongue.•Boundary conditions for ocean, atmosphere and sea ice derived from a suite of high-resolution regional models that can be used to initialize and run the regional ocean model with realistic geophysical settings.

2.
Sci Rep ; 9(1): 9442, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31263126

RESUMEN

Fjord-terminating glaciers in Svalbard lose mass through submarine melt and calving (collectively: frontal ablation), and surface melt. With the recently observed Atlantification of water masses in the Barents Sea, warmer waters enter these fjords and may reach glacier fronts, where their role in accelerating frontal ablation remains insufficiently understood. Here, the impact of ocean temperatures on frontal ablation at two glaciers is assessed using time series of water temperature at depth, analysed alongside meteorological and glaciological variables. Ocean temperatures at depth are harvested at distances of 1 km from the calving fronts of the glaciers Kronebreen and Tunabreen, western Svalbard, from 2016 to 2017. We find ocean temperature at depth to control c. 50% of frontal ablation, making it the most important factor. However, its absolute importance is considerably less than found by a 2013-2014 study, where temperatures were sampled much further away from the glaciers. In light of evidence that accelerating levels of global mass loss from marine terminating glaciers are being driven by frontal ablation, our findings illustrate the importance of sampling calving front proximal water masses.

3.
Sci Rep ; 8(1): 12819, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30131576

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

4.
Sci Rep ; 8(1): 7196, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29740089

RESUMEN

The Barents Sea Ice Sheet was a marine-based ice sheet, i.e., it rested on the Barents Sea floor during the Last Glacial Maximum (21 ky BP). The Bjørnøyrenna Ice Stream was the largest ice stream draining the Barents Sea Ice Sheet and is regarded as an analogue for contemporary ice streams in West Antarctica. Here, the retreat of the Bjørnøyrenna Ice Stream is simulated by means of two numerical ice sheet models and results assessed against geological data. We investigate the sensitivity of the ice stream to changes in ocean temperature and the impact of grounding-line physics on ice stream retreat. Our results suggest that the role played by sub-shelf melting depends on how the grounding-line physics is represented in the models. When an analytic constraint on the ice flux across the grounding line is applied, the retreat of Bjørnøyrenna Ice Stream is primarily driven by internal ice dynamics rather than by oceanic forcing. This suggests that implementations of grounding-line physics need to be carefully assessed when evaluating and predicting the response of contemporary marine-based ice sheets and individual ice streams to ongoing and future ocean warming.

5.
Nat Commun ; 7: 10365, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26778247

RESUMEN

The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (∼ 140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA