Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Aging ; 3(11): 1430-1445, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37946043

RESUMEN

Tissues within an organism and even cell types within a tissue can age with different velocities. However, it is unclear whether cells of one type experience different aging trajectories within a tissue depending on their spatial location. Here, we used spatial transcriptomics in combination with single-cell ATAC-seq and RNA-seq, lipidomics and functional assays to address how cells in the male murine liver are affected by age-related changes in the microenvironment. Integration of the datasets revealed zonation-specific and age-related changes in metabolic states, the epigenome and transcriptome. The epigenome changed in a zonation-dependent manner and functionally, periportal hepatocytes were characterized by decreased mitochondrial fitness, whereas pericentral hepatocytes accumulated large lipid droplets. Together, we provide evidence that changing microenvironments within a tissue exert strong influences on their resident cells that can shape epigenetic, metabolic and phenotypic outputs.


Asunto(s)
Epigenoma , Transcriptoma , Masculino , Ratones , Animales , Transcriptoma/genética , Epigenoma/genética , Hígado/metabolismo , Hepatocitos/metabolismo , Metaboloma
2.
Life Sci Alliance ; 5(12)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914813

RESUMEN

Over the last decades, organoids have been established from most of the tissue-resident stem and iPS cells. They hold great promise for our understanding of mammalian organ development, but also for the study of disease or even personalised medicine. In recent years, several reports hinted at intraculture organoid variability, but a systematic analysis of such heterogeneity has not been performed before. Here, we used RNA-seq of individual intrahepatic cholangiocyte organoids to address this question. We find that batch-to-batch variation is very low, whereas passage number has a profound impact on gene expression profiles. On the other hand, there is organoid-to-organoid variability within a culture. Using differential gene expression, we did not identify specific pathways that drive this variability, pointing towards possible effects of the microenvironment within the culture condition. Taken together, our study provides a framework for organoid researchers to properly consider experimental design.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Animales , Células Epiteliales , Mamíferos , Organoides/metabolismo , ARN/metabolismo , Análisis de Secuencia de ARN
3.
J Cell Biol ; 218(12): 3977-3985, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31636117

RESUMEN

During mitosis, the centrosome expands its capacity to nucleate microtubules. Understanding the mechanisms of centrosomal microtubule nucleation is, however, constrained by a lack of knowledge of the amount of soluble and polymeric tubulin at mitotic centrosomes. Here we combined light microscopy and serial-section electron tomography to measure the amount of dimeric and polymeric tubulin at mitotic centrosomes in early C. elegans embryos. We show that a C. elegans one-cell stage centrosome at metaphase contains >10,000 microtubules with a total polymer concentration of 230 µM. Centrosomes concentrate soluble α/ß tubulin by about 10-fold over the cytoplasm, reaching peak values of 470 µM, giving a combined total monomer and polymer tubulin concentration at centrosomes of up to 660 µM. These findings support in vitro data suggesting that microtubule nucleation in C. elegans centrosomes is driven in part by concentrating soluble tubulin.


Asunto(s)
Caenorhabditis elegans/química , Centrosoma/química , Mitosis , Tubulina (Proteína)/química , Animales , Centrosoma/ultraestructura , Citoplasma/química , Dimerización , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Metafase , Microscopía Electrónica , Microtúbulos/química , Nocodazol/farmacología , Polímeros/química , Interferencia de ARN , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA