Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 27(6): 8267-8282, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31052648

RESUMEN

High-fidelity qubit initialization is of significance for efficient error correction in fault tolerant quantum algorithms. Combining two best worlds, speed and robustness, to achieve high-fidelity state preparation and manipulation is challenging in quantum systems, where qubits are closely spaced in frequency. Motivated by the concept of shortcut to adiabaticity, we theoretically propose the shortcut pulses via inverse engineering and further optimize the pulses with respect to systematic errors in frequency detuning and Rabi frequency. Such protocol, relevant to frequency selectivity, is applied to rare-earth ions qubit system, where the excitation of frequency-neighboring qubits should be prevented as well. Furthermore, comparison with adiabatic complex hyperbolic secant pulses shows that these dedicated initialization pulses can reduce the time that ions spend in the excited state by a factor of 6, which is important in coherence time limited systems to approach an error rate manageable by quantum error correction. The approach may also be applicable to superconducting qubits, and any other systems where qubits are addressed in frequency.

2.
Appl Opt ; 55(36): 10442-10448, 2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-28059275

RESUMEN

The present work addresses critical issues in constructing high suppression, narrowband spectral filters in rare-earth-ion-doped crystals, mainly targeting the application of ultrasound optical tomography but is also applicable for areas such as quantum memories, self-filtering of laser frequencies, and other applications relying on high absorption in rare-earth-ion-doped crystals. The polarization of light transmitted through a highly absorbing crystal is experimentally analyzed. Additionally, an existing wave propagation method is used to simulate beam propagation through a spectral hole to study the high étendue requirements of ultrasound optical tomography.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA