Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Geophys Res Lett ; 48(22): e2021GL095232, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-35864979

RESUMEN

The 2015 and 2020 ozone holes set record sizes in October-December. We show that these years, as well as other recent large ozone holes, still adhere to a fundamental recovery metric: the later onset of early spring ozone depletion as chlorine and bromine diminishes. This behavior is also captured in the Whole Atmosphere Chemistry Climate Model. We quantify observed recovery trends of the onset of the ozone hole and in the size of the September ozone hole, with good model agreement. A substantial reduction in ozone hole depth during September over the past decade is also seen. Our results indicate that, due to dynamical phenomena, it is likely that large ozone holes will continue to occur intermittently in October-December, but ozone recovery will still be detectable through the later onset, smaller, and less deep September ozone holes: metrics that are governed more by chemical processes.

2.
J Geophys Res Atmos ; 124(13): 6669-6680, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31632893

RESUMEN

Substantial increases in the atmospheric concentration of well-mixed greenhouse gases (notably CO2), such as those projected to occur by the end of the 21st century under large radiative forcing scenarios, have long been known to cause an acceleration of the Brewer-Dobson circulation (BDC) in climate models. More recently, however, several single-model studies have proposed that ozone-depleting substances might also be important drivers of BDC trends. As these studies were conducted with different forcings over different periods, it is difficult to combine them to obtain a robust quantitative picture of the relative importance of ozone-depleting substances as drivers of BDC trends. To this end we here analyze - over identical past and future periods - the output from 20 similarly-forced models, gathered from two recent chemistry-climate modeling intercomparison projects. Our multi-model analysis reveals that ozone-depleting substances are responsible for more than half of the modeled BDC trends in the two decades 1980-2000. We also find that, as a consequence of the Montreal Protocol, decreasing concentrations of ozone-depleting substances in coming decades will strongly decelerate the BDC until the year 2080, reducing the age-of-air trends by more than half, and will thus substantially mitigate the impact of increasing CO2. As ozone-depleting substances impact BDC trends, primarily, via the depletion/recovery of stratospheric ozone over the South Pole, they impart seasonal and hemispheric asymmetries to the trends which may offer opportunities for detection in coming decades.

3.
Bull Am Meteorol Soc ; 98(1): 106-128, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29636590

RESUMEN

The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5° N, 144.8° E) during January-February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15 km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High accuracy, in-situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the UT, where previous observations from balloon-borne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January-February 2014. Together, CONTRAST, ATTREX and CAST, using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.

4.
Science ; 320(5882): 1486-9, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18556557

RESUMEN

In the past several decades, the tropospheric westerly winds in the Southern Hemisphere have been observed to accelerate on the poleward side of the surface wind maximum. This has been attributed to the combined anthropogenic effects of increasing greenhouse gases and decreasing stratospheric ozone and is predicted to continue by the Intergovernmental Panel on Climate Change/Fourth Assessment Report (IPCC/AR4) models. In this paper, the predictions of the Chemistry-Climate Model Validation (CCMVal) models are examined: Unlike the AR4 models, the CCMVal models have a fully interactive stratospheric chemistry. Owing to the expected disappearance of the ozone hole in the first half of the 21st century, the CCMVal models predict that the tropospheric westerlies in Southern Hemisphere summer will be decelerated, on the poleward side, in contrast with the prediction of most IPCC/AR4 models.

5.
Phys Chem Chem Phys ; 7(5): 866-73, 2005 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-19791374

RESUMEN

A gas-phase kinetics study of the atmospherically important reaction between Cl2 and dimethyl sulfide (DMS) Cl2 + CH3SCH3 --> products (1) has been made using a flow-tube interfaced to a photoelectron spectrometer. The rate constant for this reaction has been measured at 1.6 and 3.0 torr at T = (294 +/- 2) K as (3.4 +/- 0.7) x 10(-14) cm3 molecule(-1) s(-1). Reaction (1) has been found to proceed via an intermediate, (CH3)2SCl2, to give CH3SCH2Cl and HCl as the products. The mechanism of this reaction and the structure of the intermediate were investigated using electronic structure calculations. A comparison of the mechanisms of the reactions between Cl atoms and DMS, and Cl2 and DMS has been made and the relevance of the results to atmospheric chemistry is discussed.


Asunto(s)
Cloro/química , Sulfuros/química , Atmósfera , Simulación por Computador , Cinética , Modelos Químicos , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA