Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 93(2): 391-5, 2006 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-16302257

RESUMEN

Syntheses of trans-(1R,2R) and cis-(1S,2R)-1-amino-2-indanol (AI) were accomplished by a series of enantioselective enzymatic reactions using lipase and transaminase (TA). Lipase catalysed enantioselective hydrolysis of 2-acetoxyindanone was employed to prepare (R)-2-hydroxy indanone (HI). trans-AI (5 mM) (de > 98%) was produced from 20 mM (R)-2- HI using omega-TA and 50 mM (S)-1-aminoindan as an amino donor in water-saturated ethyl acetate. For the production of cis-AI, the diastereomeric (2R)-AI was synthesized from (R)-2-HI using reductive amination, and the kinetic resolution was performed with omega-TA. The enantioselectivity of omega-TA for (2R)-AI was increased to 22.1 in the presence of 5% gamma-cyclodextrin. cis-AI (15.4 mM) (96% de) was obtained from 40 mM (2R)-AI using 30 mM pyruvate and omega-TA (25 mg) in 10 mL of 100 mM phosphate buffer (pH 7.0).


Asunto(s)
Indanos/química , Lipasa/química , Transaminasas/química , Estereoisomerismo
2.
Biotechnol Bioeng ; 88(4): 512-9, 2004 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-15459908

RESUMEN

An enzymatic resolution was carried out for the preparation of enriched beta-heterocyclic D-alanine derivatives using Escherichia coli aromatic L-amino acid transaminase. The excess of pyrazole, imidazole, or 1,2,4-triazole reacted with methyl-2-acetamidoacrylate in acetonitrile in the presence of potassium carbonate at 60 degrees C, directly leading to make the potassium salt of the corresponding N-acetyl-beta-heterocyclic alanine derivatives. After the acidic deprotection of the N-acetyl group, 10 mM of racemic pyrazolylalanine, triazolylalanine, and imidazolylalanine were resolved to D-pyrazolylalanine, D-triazolylalanine, and D-imidazolylalanine with 46% (85% ee), 42% (72% ee), and 48% (95% ee) conversion yield in 18 h, respectively, using E. coli aromatic L-amino acid transaminase (EC 2.6.1.5). Although the three beta-heterocyclic L-alanine derivatives have similar molecular structures, they showed different reaction rates and enantioselectivities. The relative reactivities of the transaminase toward the beta-heterocyclic L-alanine derivatives could be explained by the relationship between the substrate binding energy (E, kcal/mol) to the enzyme active site and the distance (delta, A) from the nitrogen of alpha-amino group of the substrates to the C4' carbon of PLP-Lys258 Schiff base. As the ratio of the substrate binding energy (E) to the distance (delta) becomes indicative value of k(cat)/K(M) of the enzyme to the substrate, the relative reactivities of the beta-heterocyclic L-alanine derivatives were successfully correlated with E/delta, and the relationship was confirmed by our experiments.


Asunto(s)
Alanina/síntesis química , Escherichia coli/enzimología , Compuestos Heterocíclicos/síntesis química , Modelos Químicos , Modelos Moleculares , Tirosina Transaminasa/análisis , Tirosina Transaminasa/química , Descarboxilasas de Aminoácido-L-Aromático , Sitios de Unión , Simulación por Computador , Activación Enzimática , Cinética , Unión Proteica , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA