Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(3): 101295, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39139628

RESUMEN

Adeno-associated viral vectors (AAVs) are a leading delivery system for gene therapy in animal models and humans. With several Food and Drug Administration-approved AAV gene therapies on the market, issues related to vector manufacturing have become increasingly important. In this study, we focused on potentially toxic DNA contaminants that can arise from AAV proviral plasmids, the raw materials required for manufacturing recombinant AAV in eukaryotic cells. Typical AAV proviral plasmids are circular DNAs containing a therapeutic gene cassette flanked by natural AAV inverted terminal repeat (ITR) sequences, and a plasmid backbone carrying prokaryotic sequences required for plasmid replication and selection in bacteria. While the majority of AAV particles package the intended therapeutic payload, some capsids instead package the bacterial sequences located on the proviral plasmid backbone. Since ITR sequences also have promoter activity, potentially toxic bacterial open reading frames can be produced in vivo, thereby representing a safety risk. In this study, we describe a new AAV proviral plasmid for vector manufacturing that (1) significantly decreases cross-packaged bacterial sequences, (2) increases correctly packaged AAV payloads, and (3) blunts ITR-driven transcription of cross-packaged material to avoid expressing potentially toxic bacterial sequences. This system may help improve the safety of AAV vector products.

2.
J Neuromuscul Dis ; 10(6): 1031-1040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37899061

RESUMEN

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is a progressive myopathy caused by misexpression of the double homeobox 4 (DUX4) embryonic transcription factor in skeletal muscle. Identifying quantitative and minimally invasive FSHD biomarkers to report on DUX4 activity will significantly accelerate therapeutic development. OBJECTIVE: The goal of this study was to analyze secreted proteins known to be induced by DUX4 using the commercially available Olink Proteomics platform in order to identify potential blood-based molecular FSHD biomarkers. METHODS: We used high-throughput, multiplex immunoassays from Olink Proteomics to measure the levels of several known DUX4-induced genes in a cellular myoblast model of FSHD, in FSHD patient-derived myotube cell cultures, and in serum from individuals with FSHD. Levels of other proteins on the Olink Proteomics panels containing these DUX4 targets were also examined in secondary exploratory analysis. RESULTS: Placental alkaline phosphatase (ALPP) levels correlated with DUX4 expression in both cell-based FSHD systems but did not distinguish FSHD patient serum from unaffected controls. CONCLUSIONS: ALPP, as measured with the Olink Proteomics platform, is not a promising FSHD serum biomarker candidate but could be utilized to evaluate DUX4 activity in discovery research efforts.


Asunto(s)
Proteínas de Homeodominio , Distrofia Muscular Facioescapulohumeral , Femenino , Humanos , Embarazo , Biomarcadores , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Distrofia Muscular Facioescapulohumeral/diagnóstico , Distrofia Muscular Facioescapulohumeral/tratamiento farmacológico , Placenta/metabolismo , Proteómica
3.
Histochem Cell Biol ; 160(3): 253-276, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37284846

RESUMEN

Public participation in research, also known as citizen science, is being increasingly adopted for the analysis of biological volumetric data. Researchers working in this domain are applying online citizen science as a scalable distributed data analysis approach, with recent research demonstrating that non-experts can productively contribute to tasks such as the segmentation of organelles in volume electron microscopy data. This, alongside the growing challenge to rapidly process the large amounts of biological volumetric data now routinely produced, means there is increasing interest within the research community to apply online citizen science for the analysis of data in this context. Here, we synthesise core methodological principles and practices for applying citizen science for analysis of biological volumetric data. We collate and share the knowledge and experience of multiple research teams who have applied online citizen science for the analysis of volumetric biological data using the Zooniverse platform ( www.zooniverse.org ). We hope this provides inspiration and practical guidance regarding how contributor effort via online citizen science may be usefully applied in this domain.


Asunto(s)
Ciencia Ciudadana , Humanos , Participación de la Comunidad
4.
Int J Risk Saf Med ; 33(S1): S69-S72, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35871371

RESUMEN

BACKGROUND: Advance care treatment escalation plans (TEPs) are often lost between healthcare settings, leading to duplication of work and loss of patient autonomy. OBJECTIVE: This quality improvement project reviewed the usage of TEP forms and aimed to improve completeness of documentation and visibility between admissions. METHODS: Over four months we monitored TEP form documentation using a standardised data extraction form. This examined section completion, seniority of documenting clinician and transfer of forms to our hospital electronic patient record (EPRO). We added reminders to computer monitors on wards to improve EPRO upload. RESULTS: Initial data demonstrated that 95% of patients (n = 230) had a TEP, with 99% of TEPs recording resuscitation status. However, other sections were not well documented (patient capacity 57% completion and personal priorities 45% completion, respectively). Only 11.9% of TEPs documented consultant involvement. Furthermore, only 44% of TEPs with a do not attempt resuscitation (DNACPR) decision were uploaded. Following this, we added reminders to computer monitors explaining how to upload TEP decisions to EPRO, which increased EPRO uploads to 74%. CONCLUSION: Communication of TEPs needs improving across healthcare settings. This project showed that the use of a physical reminder can greatly improve communication of treatment escalation decisions. Furthermore, this intervention has inspired future projects aiming at making communication more sustainable through the use of discharge summaries.


Asunto(s)
Reanimación Cardiopulmonar , Humanos , Medicina Estatal , Comunicación , Documentación , Atención a la Salud
5.
Nat Commun ; 13(1): 2799, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589711

RESUMEN

GGGGCC repeat expansion in C9ORF72, which can be translated in both sense and antisense directions into five dipeptide repeat (DPR) proteins, including poly(GP), poly(GR), and poly(GA), is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we developed sensitive assays that can detect poly(GA) and poly(GR) in the cerebrospinal fluid (CSF) of patients with C9ORF72 mutations. CSF poly(GA) and poly(GR) levels did not correlate with age at disease onset, disease duration, or rate of decline of ALS Functional Rating Scale, and the average levels of these DPR proteins were similar in symptomatic and pre-symptomatic patients with C9ORF72 mutations. However, in a patient with C9ORF72-ALS who was treated with antisense oligonucleotide (ASO) targeting the aberrant C9ORF72 transcript, CSF poly(GA) and poly(GR) levels decreased approximately 50% within 6 weeks, indicating they may serve as sensitive fluid-based biomarkers in studies directed against the production of GGGGCC repeat RNAs or DPR proteins.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Biomarcadores , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipéptidos/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Proteínas
6.
Front Cell Dev Biol ; 10: 842342, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433703

RESUMEN

As sample preparation and imaging techniques have expanded and improved to include a variety of options for larger sized and numbers of samples, the bottleneck in volumetric imaging is now data analysis. Annotation and segmentation are both common, yet difficult, data analysis tasks which are required to bring meaning to the volumetric data. The SuRVoS application has been updated and redesigned to provide access to both manual and machine learning-based segmentation and annotation techniques, including support for crowd sourced data. Combining adjacent, similar voxels (supervoxels) provides a mechanism for speeding up segmentation both in the painting of annotation and by training a segmentation model on a small amount of annotation. The support for layers allows multiple datasets to be viewed and annotated together which, for example, enables the use of correlative data (e.g. crowd-sourced annotations or secondary imaging techniques) to guide segmentation. The ability to work with larger data on high-performance servers with GPUs has been added through a client-server architecture and the Pytorch-based image processing and segmentation server is flexible and extensible, and allows the implementation of deep learning-based segmentation modules. The client side has been built around Napari allowing integration of SuRVoS into an ecosystem for open-source image analysis while the server side has been built with cloud computing and extensibility through plugins in mind. Together these improvements to SuRVoS provide a platform for accelerating the annotation and segmentation of volumetric and correlative imaging data across modalities and scales.

7.
Elife ; 112022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35076017

RESUMEN

Skeletal muscle myoblasts (iMyoblasts) were generated from human induced pluripotent stem cells (iPSCs) using an efficient and reliable transgene-free induction and stem cell selection protocol. Immunofluorescence, flow cytometry, qPCR, digital RNA expression profiling, and scRNA-Seq studies identify iMyoblasts as a PAX3+/MYOD1+ skeletal myogenic lineage with a fetal-like transcriptome signature, distinct from adult muscle biopsy myoblasts (bMyoblasts) and iPSC-induced muscle progenitors. iMyoblasts can be stably propagated for >12 passages or 30 population doublings while retaining their dual commitment for myotube differentiation and regeneration of reserve cells. iMyoblasts also efficiently xenoengrafted into irradiated and injured mouse muscle where they undergo differentiation and fetal-adult MYH isoform switching, demonstrating their regulatory plasticity for adult muscle maturation in response to signals in the host muscle. Xenograft muscle retains PAX3+ muscle progenitors and can regenerate human muscle in response to secondary injury. As models of disease, iMyoblasts from individuals with Facioscapulohumeral Muscular Dystrophy revealed a previously unknown epigenetic regulatory mechanism controlling developmental expression of the pathological DUX4 gene. iMyoblasts from Limb-Girdle Muscular Dystrophy R7 and R9 and Walker Warburg Syndrome patients modeled their molecular disease pathologies and were responsive to small molecule and gene editing therapeutics. These findings establish the utility of iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease pathogenesis and for the development of muscle stem cell therapeutics.


Muscular dystrophies are a group of inherited genetic diseases characterised by progressive muscle weakness. They lead to disability or even death, and no cure exists against these conditions. Advances in genome sequencing have identified many mutations that underly muscular dystrophies, opening the door to new therapies that could repair incorrect genes or rebuild damaged muscles. However, testing these ideas requires better ways to recreate human muscular dystrophy in the laboratory. One strategy for modelling muscular dystrophy involves coaxing skin or other cells from an individual into becoming 'induced pluripotent stem cells'; these can then mature to form almost any adult cell in the body, including muscles. However, this approach does not usually create myoblasts, the 'precursor' cells that specifically mature into muscle during development. This limits investigations into how disease-causing mutations impact muscle formation early on. As a response, Guo et al. developed a two-step protocol of muscle maturation followed by stem cell growth selection to isolate and grow 'induced myoblasts' from induced pluripotent stem cells taken from healthy volunteers and muscular dystrophy patients. These induced myoblasts can both make more of themselves and become muscle, allowing Guo et al. to model three different types of muscular dystrophy. These myoblasts also behave as stem cells when grafted inside adult mouse muscles: some formed human muscle tissue while others remained as precursor cells, which could then respond to muscle injury and start repair. The induced myoblasts developed by Guo et al. will enable scientists to investigate the impacts of different mutations on muscle tissue and to better test treatments. They could also be used as part of regenerative medicine therapies, to restore muscle cells in patients.


Asunto(s)
Células Madre Pluripotentes Inducidas/trasplante , Distrofia Muscular Facioescapulohumeral/terapia , Mioblastos/trasplante , Animales , Diferenciación Celular , Línea Celular , Linaje de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Desarrollo de Músculos , Distrofia Muscular Facioescapulohumeral/patología , Factor de Transcripción PAX3/metabolismo , Recuperación de la Función , Regeneración
8.
Front Neurosci ; 16: 972201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36817096

RESUMEN

This study examines cortical organoids generated from a panel of isogenic trisomic and disomic iPSC lines (subclones) as a model of early fetal brain development in Down syndrome (DS). An initial experiment comparing organoids from one trisomic and one disomic line showed many genome-wide transcriptomic differences and modest differences in cell-type proportions, suggesting there may be a neurodevelopmental phenotype that is due to trisomy of chr21. To better control for multiple sources of variation, we undertook a highly robust study of ∼1,200 organoids using an expanded panel of six all-isogenic lines, three disomic, and three trisomic. The power of this experimental design was indicated by strong detection of the ∼1.5-fold difference in chr21 genes. However, the numerous expression differences in non-chr21 genes seen in the smaller experiment fell away, and the differences in cell-type representation between lines did not correlate with trisomy 21. Results suggest that the initial smaller experiment picked up differences between small organoid samples and individual isogenic lines, which "averaged out" in the larger panel of isogenic lines. Our results indicate that even when organoid and batch variability are better controlled for, variation between isogenic cell lines (even subclones) may obscure, or be conflated with, subtle neurodevelopmental phenotypes that may be present in ∼2nd trimester DS brain development. Interestingly, despite this variability between organoid batches and lines, and the "fetal stage" of these organoids, an increase in secreted Aß40 peptide levels-an Alzheimer-related cellular phenotype-was more strongly associated with trisomy 21 status than were neurodevelopmental shifts in cell-type composition.

9.
J Synchrotron Radiat ; 28(Pt 6): 1985-1995, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738954

RESUMEN

The Dual Imaging and Diffraction (DIAD) beamline at Diamond Light Source is a new dual-beam instrument for full-field imaging/tomography and powder diffraction. This instrument provides the user community with the capability to dynamically image 2D and 3D complex structures and perform phase identification and/or strain mapping using micro-diffraction. The aim is to enable in situ and in operando experiments that require spatially correlated results from both techniques, by providing measurements from the same specimen location quasi-simultaneously. Using an unusual optical layout, DIAD has two independent beams originating from one source that operate in the medium energy range (7-38 keV) and are combined at one sample position. Here, either radiography or tomography can be performed using monochromatic or pink beam, with a 1.4 mm × 1.2 mm field of view and a feature resolution of 1.2 µm. Micro-diffraction is possible with a variable beam size between 13 µm × 4 µm and 50 µm × 50 µm. One key functionality of the beamline is image-guided diffraction, a setup in which the micro-diffraction beam can be scanned over the complete area of the imaging field-of-view. This moving beam setup enables the collection of location-specific information about the phase composition and/or strains at any given position within the image/tomography field of view. The dual beam design allows fast switching between imaging and diffraction mode without the need of complicated and time-consuming mode switches. Real-time selection of areas of interest for diffraction measurements as well as the simultaneous collection of both imaging and diffraction data of (irreversible) in situ and in operando experiments are possible.

10.
Metabolomics ; 16(9): 98, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32915320

RESUMEN

INTRODUCTION: Salivary metabolite profiles are altered in adults with HIV compared to their uninfected counterparts. Less is known about youth with HIV and how oral disorders that commonly accompany HIV infection impact salivary metabolite levels. OBJECTIVE: As part of the Adolescent Master Protocol multi-site cohort study of the Pediatric HIV/AIDS Cohort Study (PHACS) network we compared the salivary metabolome of youth with perinatally-acquired HIV (PHIV) and youth HIV-exposed, but uninfected (PHEU) and determined whether metabolites differ in PHIV versus PHEU. METHODS: We used three complementary targeted and discovery-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflows to characterize salivary metabolite levels in 20 PHIV and 20 PHEU youth with and without moderate periodontitis. We examined main effects associated with PHIV and periodontal disease, and the interaction between them. RESULTS: We did not identify differences in salivary metabolite profiles that remained significant under stringent control for both multiple between-group comparisons and multiple metabolites. Levels of cadaverine, a known periodontitis-associated metabolite, were more abundant in individuals with periodontal disease with the difference being more pronounced in PHEU than PHIV. In the discovery-based dataset, we identified a total of 564 endogenous peptides in the metabolite extracts, showing that proteolytic processing and amino acid metabolism are important to consider in the context of HIV infection. CONCLUSION: The salivary metabolite profiles of PHIV and PHEU youth were overall very similar. Individuals with periodontitis particularly among the PHEU youth had higher levels of cadaverine, suggesting that HIV infection, or its treatment, may influence the metabolism of oral bacteria.


Asunto(s)
Infecciones por VIH/complicaciones , Enfermedades Periodontales/metabolismo , Saliva/metabolismo , Adolescente , Bacterias , Niño , Cromatografía Liquida , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Masculino , Metabolómica , Salud Bucal , Espectrometría de Masas en Tándem , Adulto Joven
11.
Sci Transl Med ; 12(536)2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32213627

RESUMEN

The emergence of CRISPR-Cas9 gene-editing technologies and genome-wide CRISPR-Cas9 libraries enables efficient unbiased genetic screening that can accelerate the process of therapeutic discovery for genetic disorders. Here, we demonstrate the utility of a genome-wide CRISPR-Cas9 loss-of-function library to identify therapeutic targets for facioscapulohumeral muscular dystrophy (FSHD), a genetically complex type of muscular dystrophy for which there is currently no treatment. In FSHD, both genetic and epigenetic changes lead to misexpression of DUX4, the FSHD causal gene that encodes the highly cytotoxic DUX4 protein. We performed a genome-wide CRISPR-Cas9 screen to identify genes whose loss-of-function conferred survival when DUX4 was expressed in muscle cells. Genes emerging from our screen illuminated a pathogenic link to the cellular hypoxia response, which was revealed to be the main driver of DUX4-induced cell death. Application of hypoxia signaling inhibitors resulted in increased DUX4 protein turnover and subsequent reduction of the cellular hypoxia response and cell death. In addition, these compounds proved successful in reducing FSHD disease biomarkers in patient myogenic lines, as well as improving structural and functional properties in two zebrafish models of FSHD. Our genome-wide perturbation of pathways affecting DUX4 expression has provided insight into key drivers of DUX4-induced pathogenesis and has identified existing compounds with potential therapeutic benefit for FSHD. Our experimental approach presents an accelerated paradigm toward mechanistic understanding and therapeutic discovery of a complex genetic disease, which may be translatable to other diseases with well-established phenotypic selection assays.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Animales , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/terapia , Pez Cebra/genética , Pez Cebra/metabolismo
12.
Hum Gene Ther ; 31(1-2): 90-102, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31696742

RESUMEN

Adeno-associated virus (AAV) gene therapy for neurological diseases was revolutionized by the discovery that AAV9 crosses the blood-brain barrier (BBB) after systemic administration. Transformative results have been documented in various inherited diseases, but overall neuronal transduction efficiency is relatively low. The recent development of AAV-PHP.B with ∼60-fold higher efficiency than AAV9 in transducing the adult mouse brain was the major first step toward acquiring the ability to deliver genes to the majority of cells in the central nervous system (CNS). However, little is known about the mechanism utilized by AAV to cross the BBB, and how it may diverge across species. In this study, we show that AAV-PHP.B is ineffective for systemic CNS gene transfer in the inbred strains BALB/cJ, BALB/cByJ, A/J, NOD/ShiLtJ, NZO/HILtJ, C3H/HeJ, and CBA/J mice, but it is highly potent in C57BL/6J, FVB/NJ, DBA/2J, 129S1/SvImJ, and AKR/J mice and also the outbred strain CD-1. We used the power of classical genetics to uncover the molecular mechanisms AAV-PHP.B engages to transduce CNS at high efficiency, and by quantitative trait locus mapping we identify a 6 Mb region in chromosome 15 with an logarithm of the odds (LOD) score ∼20, including single nucleotide polymorphisms in the coding region of 9 different genes. Comparison of the publicly available data on the genome sequence of 16 different mouse strains, combined with RNA-seq data analysis of brain microcapillary endothelia, led us to conclude that the expression level of Ly6a is likely the determining factor for differential efficacy of AAV-PHP.B in transducing the CNS across different mouse strains.


Asunto(s)
Antígenos Ly/genética , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/metabolismo , Dependovirus/genética , Expresión Génica , Vectores Genéticos/genética , Proteínas de la Membrana/genética , Transducción Genética , Animales , Antígenos Ly/metabolismo , Endotelio Vascular/metabolismo , Femenino , Técnicas de Transferencia de Gen , Genes Reporteros , Vectores Genéticos/administración & dosificación , Vectores Genéticos/farmacocinética , Genotipo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Sitios de Carácter Cuantitativo , Especificidad de la Especie
13.
J Med Chem ; 62(22): 10402-10422, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31647659

RESUMEN

Phosphoinositide-3-kinase δ (PI3Kδ) is a critical regulator of cell growth and transformation and has been explored as a therapeutic target for a range of diseases. Through the exploration of the thienopyrimidine scaffold, we have identified a ligand-efficient methylation that leads to remarkable selectivity for PI3Kδ over the closely related isoforms. Interrogation through the Free-Wilson analysis highlights the innate selectivity the thienopyrimidine scaffold has for PI3Kδ and provides a predictive model for the activity against the PI3K isoforms.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/química , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Relación Estructura-Actividad , Aminas/química , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Metilación , Nitrógeno/química , Fosfatidilinositol 3-Quinasas/química , Inhibidores de las Quinasa Fosfoinosítidos-3/síntesis química , Pirimidinas/química , Albúmina Sérica Humana/metabolismo
14.
Nature ; 568(7753): 561-565, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30944467

RESUMEN

Current programmable nuclease-based methods (for example, CRISPR-Cas9) for the precise correction of a disease-causing genetic mutation harness the homology-directed repair pathway. However, this repair process requires the co-delivery of an exogenous DNA donor to recode the sequence and can be inefficient in many cell types. Here we show that disease-causing frameshift mutations that result from microduplications can be efficiently reverted to the wild-type sequence simply by generating a DNA double-stranded break near the centre of the duplication. We demonstrate this in patient-derived cell lines for two diseases: limb-girdle muscular dystrophy type 2G (LGMD2G)1 and Hermansky-Pudlak syndrome type 1 (HPS1)2. Clonal analysis of inducible pluripotent stem (iPS) cells from the LGMD2G cell line, which contains a mutation in TCAP, treated with the Streptococcus pyogenes Cas9 (SpCas9) nuclease revealed that about 80% contained at least one wild-type TCAP allele; this correction also restored TCAP expression in LGMD2G iPS cell-derived myotubes. SpCas9 also efficiently corrected the genotype of an HPS1 patient-derived B-lymphoblastoid cell line. Inhibition of polyADP-ribose polymerase 1 (PARP-1) suppressed the nuclease-mediated collapse of the microduplication to the wild-type sequence, confirming that precise correction is mediated by the microhomology-mediated end joining (MMEJ) pathway. Analysis of editing by SpCas9 and Lachnospiraceae bacterium ND2006 Cas12a (LbCas12a) at non-pathogenic 4-36-base-pair microduplications within the genome indicates that the correction strategy is broadly applicable to a wide range of microduplication lengths and can be initiated by a variety of nucleases. The simplicity, reliability and efficacy of this MMEJ-based therapeutic strategy should permit the development of nuclease-based gene correction therapies for a variety of diseases that are associated with microduplications.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Conectina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/terapia , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/terapia , Alelos , Proteína 9 Asociada a CRISPR/metabolismo , Células Cultivadas , Mutación del Sistema de Lectura/genética , Humanos , Mioblastos/citología , Mioblastos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Secuencias Repetitivas de Ácidos Nucleicos/genética
15.
J Cell Sci ; 132(3)2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30659111

RESUMEN

Intraflagellar transport (IFT), which is essential for the formation and function of cilia in most organisms, is the trafficking of IFT trains (i.e. assemblies of IFT particles) that carry cargo within the cilium. Defects in IFT cause several human diseases. IFT trains contain the complexes IFT-A and IFT-B. To dissect the functions of these complexes, we studied a Chlamydomonas mutant that is null for the IFT-A protein IFT140. The mutation had no effect on IFT-B but destabilized IFT-A, preventing flagella assembly. Therefore, IFT-A assembly requires IFT140. Truncated IFT140, which lacks the N-terminal WD repeats of the protein, partially rescued IFT and supported formation of half-length flagella that contained normal levels of IFT-B but greatly reduced amounts of IFT-A. The axonemes of these flagella had normal ultrastructure and, as investigated by SDS-PAGE, normal composition. However, composition of the flagellar 'membrane+matrix' was abnormal. Analysis of the latter fraction by mass spectrometry revealed decreases in small GTPases, lipid-anchored proteins and cell signaling proteins. Thus, IFT-A is specialized for the import of membrane-associated proteins. Abnormal levels of the latter are likely to account for the multiple phenotypes of patients with defects in IFT140.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas Algáceas/genética , Membrana Celular/metabolismo , Chlamydomonas reinhardtii/genética , Cilios/metabolismo , Flagelos/metabolismo , Proteínas Ligadas a Lípidos/genética , Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Axonema/metabolismo , Axonema/ultraestructura , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/ultraestructura , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/metabolismo , Ataxia Cerebelosa/patología , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestructura , Cilios/ultraestructura , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/metabolismo , Síndrome de Ellis-Van Creveld/patología , Flagelos/ultraestructura , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Ligadas a Lípidos/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación , Organismos Modificados Genéticamente , Transporte de Proteínas , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Transducción de Señal , Proteína Fluorescente Roja
16.
Cell ; 173(3): 677-692.e20, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677512

RESUMEN

RNA-binding proteins (RBPs) with prion-like domains (PrLDs) phase transition to functional liquids, which can mature into aberrant hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mislocalize to cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibrillization and cause disease. Here, we establish that nuclear-import receptors (NIRs) specifically chaperone and potently disaggregate wild-type and disease-linked RBPs bearing a NLS. Karyopherin-ß2 (also called Transportin-1) engages PY-NLSs to inhibit and reverse FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2 fibrillization, whereas Importin-α plus Karyopherin-ß1 prevent and reverse TDP-43 fibrillization. Remarkably, Karyopherin-ß2 dissolves phase-separated liquids and aberrant fibrillar hydrogels formed by FUS and hnRNPA1. In vivo, Karyopherin-ß2 prevents RBPs with PY-NLSs accumulating in stress granules, restores nuclear RBP localization and function, and rescues degeneration caused by disease-linked FUS and hnRNPA2. Thus, NIRs therapeutically restore RBP homeostasis and mitigate neurodegeneration.


Asunto(s)
Transporte Activo de Núcleo Celular , Priones/química , Proteínas de Unión al ARN/química , Receptores Citoplasmáticos y Nucleares/química , Adulto , Anciano , Animales , Citoplasma/química , Proteínas de Unión al ADN/química , Drosophila melanogaster , Femenino , Proteínas Fluorescentes Verdes/química , Células HEK293 , Células HeLa , Homeostasis , Humanos , Carioferinas/química , Masculino , Persona de Mediana Edad , Chaperonas Moleculares/química , Mutación , Enfermedades Neurodegenerativas/patología , Dominios Proteicos , Proteína EWS de Unión a ARN/química , Factores Asociados con la Proteína de Unión a TATA/química , beta Carioferinas/química
17.
Nat Commun ; 8: 14773, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28382930

RESUMEN

The JmjC histone demethylases (KDMs) are linked to tumour cell proliferation and are current cancer targets; however, very few highly selective inhibitors for these are available. Here we report cyclic peptide inhibitors of the KDM4A-C with selectivity over other KDMs/2OG oxygenases, including closely related KDM4D/E isoforms. Crystal structures and biochemical analyses of one of the inhibitors (CP2) with KDM4A reveals that CP2 binds differently to, but competes with, histone substrates in the active site. Substitution of the active site binding arginine of CP2 to N-ɛ-trimethyl-lysine or methylated arginine results in cyclic peptide substrates, indicating that KDM4s may act on non-histone substrates. Targeted modifications to CP2 based on crystallographic and mass spectrometry analyses results in variants with greater proteolytic robustness. Peptide dosing in cells manifests KDM4A target stabilization. Although further development is required to optimize cellular activity, the results reveal the feasibility of highly selective non-metal chelating, substrate-competitive inhibitors of the JmjC KDMs.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Péptidos Cíclicos/farmacología , Cristalografía por Rayos X , Humanos , Concentración 50 Inhibidora , Histona Demetilasas con Dominio de Jumonji/metabolismo , Espectrometría de Masas , Proteolisis , Relación Estructura-Actividad , Especificidad por Sustrato
18.
Mol Ther ; 24(8): 1405-11, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27378237

RESUMEN

Derepression of DUX4 in skeletal muscle has emerged as a likely cause of pathology in facioscapulohumeral muscular dystrophy (FSHD). Here we report on the use of antisense phosphorodiamidate morpholino oligonucleotides to suppress DUX4 expression and function in FSHD myotubes and xenografts. The most effective was phosphorodiamidate morpholino oligonucleotide FM10, which targets the polyadenylation signal of DUX4. FM10 had no significant cell toxicity, and RNA-seq analyses of FSHD and control myotubes revealed that FM10 down-regulated many transcriptional targets of DUX4, without overt off-target effects. Electroporation of FM10 into FSHD patient muscle xenografts in mice also down-regulated DUX4 and DUX4 targets. These findings demonstrate the potential of antisense phosphorodiamidate morpholino oligonucleotides as an FSHD therapeutic option.


Asunto(s)
Silenciador del Gen , Terapia Genética , Proteínas de Homeodominio/genética , Morfolinos/genética , Distrofia Muscular Facioescapulohumeral/genética , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Marcación de Gen , Xenoinjertos , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Morfolinos/administración & dosificación , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Distrofia Muscular Facioescapulohumeral/terapia , Transcriptoma
19.
Brain Res ; 1647: 9-18, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-26996412

RESUMEN

Key challenges faced by all cells include how to spatiotemporally organize complex biochemistry and how to respond to environmental fluctuations. The budding yeast Saccharomyces cerevisiae harnesses alternative protein folding mediated by yeast prion domains (PrDs) for rapid evolution of new traits in response to environmental stress. Increasingly, it is appreciated that low complexity domains similar in amino acid composition to yeast PrDs (prion-like domains; PrLDs) found in metazoa have a prominent role in subcellular cytoplasmic organization, especially in relation to RNA homeostasis. In this review, we highlight recent advances in our understanding of the role of prions in enabling rapid adaptation to environmental stress in yeast. We also present the complete list of human proteins with PrLDs and discuss the prevalence of the PrLD in nucleic-acid binding proteins that are often connected to neurodegenerative disease, including: ataxin 1, ataxin 2, FUS, TDP-43, TAF15, EWSR1, hnRNPA1, and hnRNPA2. Recent paradigm-shifting advances establish that PrLDs undergo phase transitions to liquid states, which contribute to the structure and biophysics of diverse membraneless organelles. This structural functionality of PrLDs, however, simultaneously increases their propensity for deleterious protein-misfolding events that drive neurodegenerative disease. We suggest that even these PrLD-misfolding events are not irreversible and can be mitigated by natural or engineered protein disaggregases, which could have important therapeutic applications. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.


Asunto(s)
Epigénesis Genética , Enfermedades Neurodegenerativas/metabolismo , Proteínas Priónicas/metabolismo , Animales , Ataxina-1/metabolismo , Ataxina-2/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Unión al ADN/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Orgánulos/metabolismo , Proteínas Priónicas/genética , Dominios Proteicos , Proteína EWS de Unión a ARN , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae , Factores Asociados con la Proteína de Unión a TATA/metabolismo
20.
Clin Epigenetics ; 7: 37, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25904990

RESUMEN

BACKGROUND: Both forms of facioscapulohumeral muscular dystrophy (FSHD) are associated with aberrant epigenetic regulation of the chromosome 4q35 D4Z4 macrosatellite. Chromatin changes due to large deletions of heterochromatin (FSHD1) or mutations in chromatin regulatory proteins (FSHD2) lead to relaxation of epigenetic repression and increased expression of the deleterious double homeobox 4 (DUX4) gene encoded within the distal D4Z4 repeat. However, many individuals with the genetic requirements for FSHD remain asymptomatic throughout their lives. Here we investigated family cohorts of FSHD1 individuals who were either affected (manifesting) or without any discernible weakness (nonmanifesting/asymptomatic) and their unaffected family members to determine if individual epigenetic status and stability of repression at the contracted 4q35 D4Z4 array in myocytes correlates with FSHD disease. RESULTS: Family cohorts were analyzed for DNA methylation on the distal pathogenic 4q35 D4Z4 repeat on permissive A-type subtelomeres. We found DNA hypomethylation in FSHD1-affected subjects, hypermethylation in healthy controls, and distinctly intermediate levels of methylation in nonmanifesting subjects. We next tested if these differences in DNA methylation had functional relevance by assaying DUX4-fl expression and the stability of epigenetic repression of DUX4-fl in myogenic cells. Treatment with drugs that alter epigenetic status revealed that healthy cells were refractory to treatment, maintaining stable repression of DUX4, while FSHD1-affected cells were highly responsive to treatment and thus epigenetically poised to express DUX4. Myocytes from nonmanifesting subjects had significantly higher levels of DNA methylation and were more resistant to DUX4 activation in response to epigenetic drug treatment than cells from FSHD1-affected first-degree relatives containing the same contraction, indicating that the epigenetic status of the contracted D4Z4 array is reflective of disease. CONCLUSIONS: The epigenetic status of the distal 4qA D4Z4 repeat correlates with FSHD disease; FSHD-affected subjects have hypomethylation, healthy unaffected subjects have hypermethylation, and nonmanifesting subjects have characteristically intermediate methylation. Thus, analysis of DNA methylation at the distal D4Z4 repeat could be used as a diagnostic indicator of developing clinical FSHD. In addition, the stability of epigenetic repression upstream of DUX4 expression is a key regulator of disease and a viable therapeutic target.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA