Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 72018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29985129

RESUMEN

The endoplasmic reticulum (ER) protein folding capacity is balanced with the protein folding burden to prevent accumulation of un- or misfolded proteins. The ER membrane-resident kinase/RNase Ire1 maintains ER protein homeostasis through two fundamentally distinct processes. First, Ire1 can initiate a transcriptional response through a non-conventional mRNA splicing reaction to increase the ER folding capacity. Second, Ire1 can decrease the ER folding burden through selective mRNA decay. In Saccharomyces cerevisiae and Schizosaccharomyces pombe, the two Ire1 functions have been evolutionarily separated. Here, we show that the respective Ire1 orthologs have become specialized for their functional outputs by divergence of their RNase specificities. In addition, RNA structural features separate the splicing substrates from the decay substrates. Using these insights, we engineered an S. pombe Ire1 cleavage substrate into a splicing substrate, which confers S. pombe with both Ire1 functional outputs.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Ingeniería Genética , Empalme del ARN/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Secuencia de Aminoácidos , Secuencia de Bases , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Conformación de Ácido Nucleico , Dominios Proteicos , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Especificidad por Sustrato
2.
Elife ; 62017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28945192

RESUMEN

The unfolded protein response (UPR) monitors and adjusts the protein folding capacity of the endoplasmic reticulum (ER). In S. pombe, the ER membrane-resident kinase/endoribonuclease Ire1 utilizes a mechanism of selective degradation of ER-bound mRNAs (RIDD) to maintain homeostasis. We used a genetic screen to identify factors critical to the Ire1-mediated UPR and found several proteins, Dom34, Hbs1 and Ski complex subunits, previously implicated in ribosome rescue and mRNA no-go-decay (NGD). Ribosome profiling in ER-stressed cells lacking these factors revealed that Ire1-mediated cleavage of ER-associated mRNAs results in ribosome stalling and mRNA degradation. Stalled ribosomes iteratively served as a ruler to template precise, regularly spaced upstream mRNA cleavage events. This clear signature uncovered hundreds of novel target mRNAs. Our results reveal that the UPR in S. pombe executes RIDD in an intricate interplay between Ire1, translation, and the NGD pathway, and establish a critical role for NGD in maintaining ER homeostasis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endorribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Homeostasis , Estabilidad del ARN , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Respuesta de Proteína Desplegada
3.
Elife ; 62017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28481201

RESUMEN

Yeast is a powerful model for systems genetics. We present a versatile, time- and labor-efficient method to functionally explore the Saccharomyces cerevisiae genome using saturated transposon mutagenesis coupled to high-throughput sequencing. SAturated Transposon Analysis in Yeast (SATAY) allows one-step mapping of all genetic loci in which transposons can insert without disrupting essential functions. SATAY is particularly suited to discover loci important for growth under various conditions. SATAY (1) reveals positive and negative genetic interactions in single and multiple mutant strains, (2) can identify drug targets, (3) detects not only essential genes, but also essential protein domains, (4) generates both null and other informative alleles. In a SATAY screen for rapamycin-resistant mutants, we identify Pib2 (PhosphoInositide-Binding 2) as a master regulator of TORC1. We describe two antagonistic TORC1-activating and -inhibiting activities located on opposite ends of Pib2. Thus, SATAY allows to easily explore the yeast genome at unprecedented resolution and throughput.


Asunto(s)
Genes Fúngicos , Genética Microbiana/métodos , Anotación de Secuencia Molecular/métodos , Mutagénesis Insercional/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Elementos Transponibles de ADN , Genoma Fúngico , Análisis de Secuencia de ADN
4.
Science ; 345(6192): 98-101, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24994655

RESUMEN

Protein folding by the endoplasmic reticulum (ER) is physiologically critical; its disruption causes ER stress and augments disease. ER stress activates the unfolded protein response (UPR) to restore homeostasis. If stress persists, the UPR induces apoptotic cell death, but the mechanisms remain elusive. Here, we report that unmitigated ER stress promoted apoptosis through cell-autonomous, UPR-controlled activation of death receptor 5 (DR5). ER stressors induced DR5 transcription via the UPR mediator CHOP; however, the UPR sensor IRE1α transiently catalyzed DR5 mRNA decay, which allowed time for adaptation. Persistent ER stress built up intracellular DR5 protein, driving ligand-independent DR5 activation and apoptosis engagement via caspase-8. Thus, DR5 integrates opposing UPR signals to couple ER stress and apoptotic cell fate.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico/fisiología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/fisiología , Respuesta de Proteína Desplegada , Animales , Caspasas , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/metabolismo , Células HCT116 , Humanos , Ligandos , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Factor de Transcripción CHOP
5.
Proc Natl Acad Sci U S A ; 109(45): E3084-93, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23054834

RESUMEN

A quantitative understanding of how transcription factors interact with genomic target sites is crucial for reconstructing transcriptional networks in vivo. Here, we use Hac1, a well-characterized basic leucine zipper (bZIP) transcription factor involved in the unfolded protein response (UPR) as a model to investigate interactions between bZIP transcription factors and their target sites. During the UPR, the accumulation of unfolded proteins leads to unconventional splicing and subsequent translation of HAC1 mRNA, followed by transcription of UPR target genes. Initial candidate-based approaches identified a canonical cis-acting unfolded protein response element (UPRE-1) within target gene promoters; however, subsequent studies identified a large set of Hac1 target genes lacking this UPRE-1 and containing a different motif (UPRE-2). Using a combination of unbiased and directed microfluidic DNA binding assays, we established that Hac1 binds in two distinct modes: (i) to short (6-7 bp) UPRE-2-like motifs and (ii) to significantly longer (11-13 bp) extended UPRE-1-like motifs. Using a genetic screen, we demonstrate that a region of extended homology N-terminal to the basic DNA binding domain is required for this dual site recognition. These results establish Hac1 as the first bZIP transcription factor known to adopt more than one binding mode and unify previously conflicting and discrepant observations of Hac1 function into a cohesive model of UPR target gene activation. Our results also suggest that even structurally simple transcription factors can recognize multiple divergent target sites of very different lengths, potentially enriching their downstream target repertoire.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ADN/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Empalme Alternativo/genética , Emparejamiento Base/genética , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Sitios de Unión , Genoma/genética , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Motivos de Nucleótidos/genética , Nucleótidos/metabolismo , Posición Específica de Matrices de Puntuación , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/química , Elementos de Respuesta/genética , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Respuesta de Proteína Desplegada/genética
6.
Elife ; 1: e00048, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23066505

RESUMEN

The unfolded protein response (UPR) monitors the protein folding capacity of the endoplasmic reticulum (ER). In all organisms analyzed to date, the UPR drives transcriptional programs that allow cells to cope with ER stress. The non-conventional splicing of Hac1 (yeasts) and XBP1 (metazoans) mRNA, encoding orthologous UPR transcription activators, is conserved and dependent on Ire1, an ER membrane-resident kinase/endoribonuclease. We found that the fission yeast Schizosaccharomyces pombe lacks both a Hac1/XBP1 ortholog and a UPR-dependent-transcriptional-program. Instead, Ire1 initiates the selective decay of a subset of ER-localized-mRNAs that is required to survive ER stress. We identified Bip1 mRNA, encoding a major ER-chaperone, as the sole mRNA cleaved upon Ire1 activation that escapes decay. Instead, truncation of its 3' UTR, including loss of its polyA tail, stabilized Bip1 mRNA, resulting in increased Bip1 translation. Thus, S. pombe uses a universally conserved stress-sensing machinery in novel ways to maintain homeostasis in the ER.DOI:http://dx.doi.org/10.7554/eLife.00048.001.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , Schizosaccharomyces/genética , Respuesta de Proteína Desplegada , Regiones no Traducidas 3' , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Homeostasis/genética , Biosíntesis de Proteínas , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Empalme del ARN , Estabilidad del ARN , ARN Mensajero/metabolismo , Schizosaccharomyces/metabolismo , Transducción de Señal , Transcripción Genética
7.
Mol Biol Cell ; 19(8): 3323-33, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18508925

RESUMEN

Glucose-dependent regulation of carbon metabolism is a subject of intensive studies. We have previously shown that the switch from gluconeogenesis to glycolysis is associated with ubiquitin-proteasome linked elimination of the key enzyme fructose-1,6-bisphosphatase. Seven glucose induced degradation deficient (Gid)-proteins found previously in a genomic screen were shown to form a complex that binds FBPase. One of the subunits, Gid2/Rmd5, contains a degenerated RING finger domain. In an in vitro assay, heterologous expression of GST-Gid2 leads to polyubiquitination of proteins. In addition, we show that a mutation in the degenerated RING domain of Gid2/Rmd5 abolishes fructose-1,6-bisphosphatase polyubiquitination and elimination in vivo. Six Gid proteins are present in gluconeogenic cells. A seventh protein, Gid4/Vid24, occurs upon glucose addition to gluconeogenic cells and is afterwards eliminated. Forcing abnormal expression of Gid4/Vid24 in gluconeogenic cells leads to fructose-1,6-bisphosphatase degradation. This suggests that Gid4/Vid24 initiates fructose-1,6-bisphosphatase polyubiquitination by the Gid complex and its subsequent elimination by the proteasome. We also show that an additional gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, is subject to Gid complex-dependent degradation. Our study uncovers a new type of ubiquitin ligase complex composed of novel subunits involved in carbohydrate metabolism and identifies Gid4/Vid24 as a major regulator of this E3.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Ubiquitina-Proteína Ligasas/química , Metabolismo de los Hidratos de Carbono , Fructosa-Bifosfatasa/química , Gluconeogénesis , Glucosa/metabolismo , Modelos Biológicos , Mutación , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Plásmidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Transporte Vesicular
8.
J Bacteriol ; 186(21): 7243-53, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15489436

RESUMEN

Rhodospirillum rubrum possesses a putative intracellular poly(3-hydroxybutyrate) (PHB) depolymerase system consisting of a soluble PHB depolymerase, a heat-stable activator, and a 3-hydroxybutyrate dimer hydrolase (J. M. Merrick and M. Doudoroff, J. Bacteriol. 88:60-71, 1964). In this study we reinvestigated the soluble R. rubrum PHB depolymerase (PhaZ1). It turned out that PhaZ1 is a novel type of PHB depolymerase with unique properties. Purified PhaZ1 was specific for amorphous short-chain-length polyhydroxyalkanoates (PHA) such as native PHB, artificial PHB, and oligomer esters of (R)-3-hydroxybutyrate with 3 or more 3-hydroxybutyrate units. Atactic PHB, (S)-3-hydroxybutyrate oligomers, medium-chain-length PHA, and lipase substrates (triolein, tributyrin) were not hydrolyzed. The PHB depolymerase structural gene (phaZ1) was cloned. Its deduced amino acid sequence (37,704 Da) had no significant similarity to those of intracellular PHB depolymerases of Wautersia eutropha or of other PHB-accumulating bacteria. PhaZ1 was found to have strong amino acid homology with type-II catalytic domains of extracellular PHB depolymerases, and Ser(42), Asp(138), and His(178) were identified as catalytic-triad amino acids, with Ser(42) as the putative active site. Surprisingly, the first 23 amino acids of the PHB depolymerase previously assumed to be intracellular revealed features of classical signal peptides, and Edman sequencing of purified PhaZ1 confirmed the functionality of the predicted cleavage site. Extracellular PHB depolymerase activity was absent, and analysis of cell fractions unequivocally showed that PhaZ1 is a periplasm-located enzyme. The previously assumed intracellular activator/depolymerase system is unlikely to have a physiological function in PHB mobilization in vivo. A second gene, encoding the putative true intracellular PHB depolymerase (PhaZ2), was identified in the genome sequence of R. rubrum.


Asunto(s)
Hidrolasas de Éster Carboxílico , Hidroxibutiratos/metabolismo , Periplasma/enzimología , Poliésteres/metabolismo , Rhodospirillum rubrum/enzimología , Secuencia de Aminoácidos , Hidrolasas de Éster Carboxílico/antagonistas & inhibidores , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Datos de Secuencia Molecular , Rhodospirillum rubrum/genética , Rhodospirillum rubrum/crecimiento & desarrollo , Solubilidad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA