Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38676017

RESUMEN

In high-density network environments with multiple access points (APs) and stations, individual uplink scheduling by each AP can severely interfere with the uplink transmissions of neighboring APs and their associated stations. In congested areas where concurrent uplink transmissions may lead to significant interference, it would be beneficial to deploy a cooperative scheduler or a central coordinating entity responsible for orchestrating cooperative uplink scheduling by assigning several neighboring APs to support the uplink transmission of a single station within a proximate service area to alleviate the excessive interference. Cooperative uplink scheduling facilitated by cooperative information sharing and management is poised to improve the likelihood of successful uplink transmissions in areas with a high concentration of APs and stations. Nonetheless, it is crucial to account for the queue stability of the stations and the potential delays arising from information exchange and the decision-making process in uplink scheduling to maintain the overall effectiveness of the cooperative approach. In this paper, we propose a Lyapunov drift-plus-penalty framework-based cooperative uplink scheduling method for densely populated Wi-Fi networks. The cooperative scheduler aggregates information, such as signal-to-interference-plus-noise ratio (SINR) and queue status. During the aggregation procedure, propagation delays are also estimated and utilized as a value of expected cooperation delays in scheduling decisions. Upon aggregating the information, the cooperative scheduler calculates the Lyapunov drift-plus-penalty value, incorporating a predefined model parameter to adjust the system accordingly. Among the possible scheduling candidates, the proposed method proceeds to make uplink decisions that aim to reduce the upper bound of the Lyapunov drift-plus-penalty value, thereby improving the network performance and stability without a severe increase in cooperation delay in highly congested areas. Through comprehensive performance evaluations, the proposed method effectively enhances network performance with an appropriate model parameter. The performance improvement is particularly notable in highly congested areas and is achieved without a severe increase in cooperation delays.

2.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257628

RESUMEN

Machine learning techniques have attracted considerable attention for wireless networks because of their impressive performance in complicated scenarios and usefulness in various applications. However, training with and sharing raw data obtained locally from each wireless node does not guarantee privacy and requires a large communication overhead. To mitigate such issues, federated learning (FL), in which sharing parameters for model updates are shared instead of raw data, has been developed. FL has also been studied using blockchain techniques to efficiently perform learning in distributed wireless systems without having to deploy a centralized server. Although blockchain-based decentralized federated learning (BDFL) is a promising technique for various wireless sensor networks, malicious attacks can still occur, which result in performance degradation or malfunction. In this study, we analyze the impact of a jamming threats from malicious miners to BDFL in wireless networks. In a wireless BDFL system, it is possible for malicious miners with jamming capability to interfere with the collection of model parameters by normal miners, thus preventing the victim miner from generating a global model. By disrupting normal miners participating in BDFL systems, malicious miners with jamming capability can more easily add malicious data to the mainstream. Through various simulations, we evaluated the success probability performance of malicious block insertion and the participation rate of normal miners in a wireless BDFL system.

3.
J Forensic Sci ; 68(1): 139-153, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36273272

RESUMEN

The number of smartwatch users has been rapidly increasing in recent years. A smartwatch is a wearable device that collects various types of data using sensors and provides basic functions, such as healthcare-related measurements and audio recording. In this study, we proposed the forensic authentication method for audio recordings from the Voice Recording application in the Samsung Galaxy Watch4 series. First, a total of 240 audio recordings from each of the four different models, paired with four different smartphones for synchronization via Bluetooth, were collected and verified. To analyze the characteristics of smartwatch audio recordings, we examined the transition of the audio latency, writable audio bandwidth, timestamps, and file structure between those generated in the smartwatches and those edited using the Voice Recording application of the paired smartphones. In addition, the devices with the audio recordings were examined via the Android Debug Bridge (ADB) tool and compared with the timestamps stored in the file system. The experimental results showed that the audio latency, writable audio bandwidth, and file structure of audio recordings generated by smartwatches differed from those generated by smartphones. Additionally, by analyzing the file structure, audio recordings can be classified as unmanipulated, manipulation has been attempted, or manipulated. Finally, we can forensically authenticate the audio recordings generated by the Voice Recorder application in the Samsung Galaxy Watch4 series by accessing the smartwatches and analyzing the timestamps related to the audio recordings in the file system.


Asunto(s)
Grabaciones de Sonido , Dispositivos Electrónicos Vestibles , Teléfono Inteligente , Medicina Legal
4.
Sensors (Basel) ; 21(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921407

RESUMEN

In wireless local area networks (WLANs), the effect of interference signals between neighboring nodes increases as the number of wireless nodes using limited radio frequency resources in a limited space increases, which can significantly degrade the reliability of data transmission. In high-density WLANs, there can be several neighboring access points (APs) that can receive uplink transmission from a station. In conventional medium access control (MAC) protocols, uplink data frames containing errors or transmitted from a non-associated station are discarded at APs. Alternatively, we propose a MAC protocol using redundant wireless links between neighboring APs and the non-associated stations. In the proposed MAC protocol, we consider a centralized WLAN with a control node that performs error corrections of erroneous uplink data frames via a majority voting algorithm-based link-layer diversity scheme using uplink data received from multiple APs to increase the reliability of data transmission. In addition, we propose an adaptive carrier sensing ranging mechanism to improve the uplink network throughput in the proposed centralized WLAN system. Further, we conduct simulation studies and software-defined radio-based experiments to evaluate the performance of the proposed MAC protocol in various WLAN scenarios.

5.
Sensors (Basel) ; 19(12)2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31248088

RESUMEN

Network slicing is a technology that virtualizes a single infrastructure into multiple logical networks (called slices) where resources or virtualized functions can be flexibly configured by demands of applications to satisfy their quality of service (QoS) requirements. Generally, to provide the guaranteed QoS in applications, resources of slices are isolated. In wired networks, this resource isolation is enabled by allocating dedicated data bandwidths to slices. However, in wireless networks, resource isolation may be challenging because the interference between links affects the actual bandwidths of slices and degrades their QoS. In this paper, we propose a slice management scheme that mitigates the interference imposed on each slice according to their priorities by determining routes of flows with a different routing policy. Traffic flows in the slice with the highest priority are routed into shortest paths. In each lower-priority slice, the routing of traffic flows is conducted while minimizing a weighted summation of interference to other slices. Since higher-priority slices have higher interference weights, they receive lower interference from other slices. As a result, the QoS of slices is differentiated according to their priorities while the interference imposed on slices is reduced. We compared the proposed slice management scheme with a naïve slice management (NSM) method that differentiates QoS among slices by priority queuing. We conducted some simulations and the simulation results show that our proposed management scheme not only differentiates the QoS of slices according to their priorities but also enhances the average throughput and delay performance of slices remarkably compared to that of the NSM method. The simulations were conducted in grid network topologies with 16 and 100 nodes and a random network topology with 200 nodes. Simulation results indicate that the proposed slice management increased the average throughput of slices up to 6%, 13%, and 7% and reduced the average delay of slices up to 14%, 15%, and 11% in comparison with the NSM method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA