Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz J Med Biol Res ; 56: e12408, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36790289

RESUMEN

Globally, cardiac arrest (CA) is a leading cause of death and disability. Asphyxial CA (ACA)-induced kidney damage is a crucial factor in reducing the survival rate. The purpose of this study was to investigate the role of antioxidant enzymes in histopathological renal damage in an ACA rat model at different time points. A total of 88 rats were divided into five groups and exposed to ACA except for the sham group. To evaluate glomerular function and oxidative stress, serum levels of blood urea nitrogen (BUN) and creatinine (Crtn) and malondialdehyde (MDA) levels in renal tissues were measured. To determine histopathological damage, hematoxylin and eosin staining, periodic acid-Schiff staining, and Masson's trichrome staining were performed. Expression levels of antioxidant enzymes including superoxide dismutase-1 (SOD-1), superoxide dismutase-2 (SOD-2), catalase (CAT), and glutathione peroxidase (GPx) were measured by immunohistochemistry (IHC). Survival rate of the experimental rats was reduced to 80% at 6 h, 55% at 12 h, 42.9% at 1 day, and 33% at 2 days after return of spontaneous circulation. Levels of BUN, Crtn, and MDA started to increase significantly in the early period of CA induction. Renal histopathological damage increased markedly from 6 h until two days post-CA. Additionally, expression levels of antioxidant enzymes were significantly decreased at 6 h, 12 h, 1 day, and 2 days after CA. CA-induced oxidative stress and decreased levels of antioxidant enzymes (SOD-1, SOD-2, CAT, GPx) from 6 h to two days could be possible mediators of severe renal tissue damage and increased mortality rate.


Asunto(s)
Antioxidantes , Enfermedades Renales , Ratas , Animales , Antioxidantes/farmacología , Riñón/patología , Catalasa , Estrés Oxidativo , Enfermedades Renales/patología , Superóxido Dismutasa , Glutatión Peroxidasa/metabolismo , Malondialdehído/metabolismo
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;56: e12408, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1420768

RESUMEN

Globally, cardiac arrest (CA) is a leading cause of death and disability. Asphyxial CA (ACA)-induced kidney damage is a crucial factor in reducing the survival rate. The purpose of this study was to investigate the role of antioxidant enzymes in histopathological renal damage in an ACA rat model at different time points. A total of 88 rats were divided into five groups and exposed to ACA except for the sham group. To evaluate glomerular function and oxidative stress, serum levels of blood urea nitrogen (BUN) and creatinine (Crtn) and malondialdehyde (MDA) levels in renal tissues were measured. To determine histopathological damage, hematoxylin and eosin staining, periodic acid-Schiff staining, and Masson's trichrome staining were performed. Expression levels of antioxidant enzymes including superoxide dismutase-1 (SOD-1), superoxide dismutase-2 (SOD-2), catalase (CAT), and glutathione peroxidase (GPx) were measured by immunohistochemistry (IHC). Survival rate of the experimental rats was reduced to 80% at 6 h, 55% at 12 h, 42.9% at 1 day, and 33% at 2 days after return of spontaneous circulation. Levels of BUN, Crtn, and MDA started to increase significantly in the early period of CA induction. Renal histopathological damage increased markedly from 6 h until two days post-CA. Additionally, expression levels of antioxidant enzymes were significantly decreased at 6 h, 12 h, 1 day, and 2 days after CA. CA-induced oxidative stress and decreased levels of antioxidant enzymes (SOD-1, SOD-2, CAT, GPx) from 6 h to two days could be possible mediators of severe renal tissue damage and increased mortality rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA