Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 264: 136-43, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24291666

RESUMEN

Three different types of nitrile-functionalized amines, including 3-(N,N-diethylamino)propionitrile (DEAPN), 3-(N,N-dibutylamino)propionitrile (DBAPN), and N-methyl-N,N-dipropionitrile amine (MADPN) were synthesized, and their SO2 absorption performances were evaluated and compared with those of hydroxy-functionalized amines such as N,N-diethyl-N-ethanol amine (DEEA), N,N-dibutyl-N-ethanol amine (DBEA), and N-methyl-N,N-diethanol amine (MDEA). Absorption-desorption cycle experiments clearly demonstrate that the nitrile-functionalized amines are more efficient than the hydroxy-functionalized amines in terms of absorption rate and regenerability. Computational calculations with DBEA and DBAPN revealed that DBEA bearing a hydroxyethyl group chemically interacts with SO2 through oxygen atom, forming an ionic compound with a covalently bound OSO2(-) group. On the contrary, DBAPN bearing a nitrile group physically interacts with SO2 through the nitrogen and the hydrogen atoms of the two methylene groups adjacent to the amino and nitrile functionalities.


Asunto(s)
Aminas/química , Nitrilos/química , Dióxido de Azufre/aislamiento & purificación , Adsorción
2.
Chemphyschem ; 13(14): 3365-9, 2012 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-22821827

RESUMEN

Despite the academic and industrial importance of the chemical reaction between carbon dioxide (CO(2)) and alkanolamine, the delicate and precise monitoring of the reaction dynamics by conventional one-dimensional (1D) spectroscopy is still challenging, due to the overlapped bands and the restricted static information. Herein, we report two-dimensional infrared correlation spectroscopy (2D IR COS) and principal component analysis (PCA) on the reaction dynamics of a sterically hindered amine, 2-[(1,1-dimethylethyl)amino]ethanol (TBAE) and CO(2). The formation of carbonate rather than carbamate species, which contribute to the unusual high working capacity of ∼1 mole CO(2) per mole of TBAE at 40 °C, occurs through deprotonation of the hydroxyl group, protonation on the nitrogen atom of the amino group, and formation of a carbonate species due to the steric hindrance of the tert-butyl group. In particular, PCA captures the chemical transition into a carbonate species and the main contributions of ν(CO(2)), ν(OH), ν(C - N), and ν(C=O) bands to the carbonation, while 2D IR COS verifies the interrelation of four bands and their changes. Therefore, these results provide a powerful analytic method to understand the complex and abnormal reaction dynamics as well as the rational design strategy for the CO(2) absorbents.


Asunto(s)
Alcoholes/química , Aminas/química , Dióxido de Carbono/química , Análisis de Componente Principal , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA