Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Small ; 17(11): e2006737, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33619846

RESUMEN

Metal halide perovskites (MHPs) exhibit optoelectronic properties that are dependent on their ionic composition, and the feasible exploitation of these properties for device applications requires the ability to control the ionic composition integrated with the patterning process. Herein, the halide exchange process of MHP thin films directly combined with the patterning process via a vapor transport method is demonstrated. Specifically, the patterned arrays of CH3 NH3 PbBr3 (MAPbBr3 ) are obtained by stepwise conversion from polymer-templated PbI2 thin films to CH3 NH3 PbI3 (MAPbI3 ), followed by halide exchange via precursor switching from CH3 NH3 I to CH3 NH3 Br. It is confirmed that the phase transformation from MAPbI3 patterns to MAPbBr3 shows time- and position-dependences on the substrate during halide exchange following the solid-solution model with Avrami kinetics. The photodetectors fabricated from the completely exchanged MAPbBr3 patterns display exceptional air stability and reversible detectivity from "apparent death" upon removing the adsorbed impurities, thereby suggesting the superior structural stability of perovskite patterns prepared through vapor-phase halide exchange. The results demonstrate the potential of chemical vapor deposition patterning of MHP materials in multicomponent optoelectronic device systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA