Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 52(4): 814-828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37117005

RESUMEN

Ecological sanitation combined with thermophilic composting is a viable option to transform human excreta into a stabilized, pathogen-free, and nutrient-rich fertilizer. In combination with suitable bulking materials such as sawdust and straw, and additives such as biochar, this could also be a suitable waste management strategy for reducing greenhouse gas (GHG) emissions. In this study, we conducted a 143-days thermophilic composting of human excreta or cattle manure together with teff straw, organic waste, and biochar to investigate the effect that biochar has on GHG (CO2 , N2 O, and CH4 ) and NH3 emissions. The composting was performed in wooden boxes (1.5 × 1.5 × 1.4 m3 ), GHG were measured by using a portable FTIR gas analyzer and NH3 was sampled as ammonium in an H2 SO4 trap. We found that the addition of biochar significantly reduced CH4 emissions by 91% in the cattle manure compost, and N2 O emissions by 56%-57% in both humanure and cattle manure composts. Overall, non-CO2 GHG emissions were reduced by 51%-71%. In contrast, we did not observe a significant biochar effect on CO2 and NH3 emissions. Previous data already showed that it is possible to sanitize human fecal material when using this composting method. Our results suggest that thermophilic composting with biochar addition is a safe and cost-effective waste management practice for producing a nutrient-rich fertilizer from human excreta, while reducing GHG emissions at the same time.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Humanos , Bovinos , Animales , Estiércol , Fertilizantes , Carbón Orgánico , Metano/análisis , Suelo , Nitrógeno/análisis
3.
Sci Rep ; 12(1): 18424, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319739

RESUMEN

Reducing nitrogen losses can be accomplished by mixing fertilizers with nitrification inhibitors (NI). In some agricultural systems, increasing soil N supply capacity by the use of NI could lead to improved N use efficiency (NUE) and increased crop yields. This study examined the effect of different N rates and NI in maize in the north of Iran. The maize was fertilized with urea at three levels (69, 115 and 161 kg N.ha-1) alone or with nitrapyrin as NI. Increasing the N application rate resulted in a considerable rise in growing-season N2O emissions. When nitrapyrin was used, N2O emissions were dramatically reduced. NI treatment reduced N2O emissions in the growth season by 88%, 88%, and 69% in 69, 115, and 161 kg of N.ha-1, respectively. NI treatment reduced yield-scaled N2O emissions; the lowest quantity of yield-scaled N2O was found in 69 N + NI (0.09 g N2O-N kg-1 N uptake). Additionally, grain yield increased by 19%, 31% and 18.4% after applying NI to 69 N, 115 N, and N69, N115 and N161. Results showed that 115 N + NI and N69 treatments showed the highest (65%) and lowest (29%) NUEs, respectively. Finally, our findings show that NI can reduce N2O emissions while increasing NUE and yield, but that the application method and rate of nitrapyrin application need to be improved in order to maximize its mitigation potential.


Asunto(s)
Nitrógeno , Óxido Nitroso , Óxido Nitroso/análisis , Nitrógeno/análisis , Zea mays , Fertilizantes , Agricultura/métodos , Suelo , China
4.
Sci Total Environ ; 843: 156946, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35768029

RESUMEN

Significant research has been conducted on the effects of soil salinity issue on agricultural productivity. However, limited consideration has been given to its critical effects on soil biogeochemistry (e.g., soil microorganisms, soil organic carbon and greenhouse gas (GHG) emissions), land desertification, and biodiversity loss. This article is based on synthesis of information in 238 articles published between 1989 and 2022 on these effects of soil salinity. Principal findings are as follows: (1) salinity affects microbial community composition and soil enzyme activities due to changes in osmotic pressure and ion effects; (2) soil salinity reduces soil organic carbon (SOC) content and alters GHG emissions, which is a serious issue under intensifying agriculture and global warming scenarios; (3) soil salinity can reduce crop yield up to 58 %; (4) soil salinity, even at low levels, can cause profound alteration in soil biodiversity; (5) due to severe soil salinity, some soils are reaching critical desertification status; (6) innovate mitigation strategies of soil salinity need to be approached in a way that should support the United Nations Sustainable Development Goals (UN-SDGs). Knowledge gaps still exist mainly in the effects of salinity especially, responses of GHG emissions and biodiversity. Previous experiences quantifying soil salinity effects remained small-scale, and inappropriate research methods were sometimes applied for investigating soil salinity effects. Therefore, further studies are urgently required to improve our understanding on the effects of salinity, address salinity effects in larger-scale, and develop innovative research methods.


Asunto(s)
Gases de Efecto Invernadero , Agricultura/métodos , Biodiversidad , Carbono/análisis , Dióxido de Carbono/análisis , Conservación de los Recursos Naturales , Metano/análisis , Óxido Nitroso/análisis , Salinidad , Suelo/química
5.
Environ Sci Pollut Res Int ; 29(10): 14846-14855, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34622405

RESUMEN

The aim of this study was to evaluate the effectiveness of nitrification inhibitor (nitrapyrin; NI) as a mitigation option for yield-scaled emissions of nitrous oxide (N2O) under tillage management and urea fertilization in the irrigated maize fields in northern Iran. A split-plot experiment was performed based on a randomized completed blocks design with three replicates. The main plots were the levels of tillage practices (conventional tillage (CT) and minimum tillage (MT), and the subplots were the fertilizer treatments (control, urea, and urea + NI). The gas samples for measuring N2O emissions were collected during the maize growing season from June to September, using opaque manual circular static chambers. Soil samples were taken at 0-10 cm to determine water-filled pore space, ammonium (NH4+), and nitrate (NO3-) concentrations in the soil. When the crop reached physiological maturity, maize was harvested to measure grain yield, biomass production, N uptake of aboveground, and nitrogen use efficiency (NUE). The results showed that the applying NI in combination with urea reduced the total N2O emissions by up to 58% and 64% in MT and CT, respectively. In the urea + NI treatment, mean soil concentrations of NH4+ and NO3- were significantly higher (20%) and lower (23.5%), respectively, compared with other treatments. The NI reduced the yield-scaled N2O-N emission up to 79% and 55% for CT and MT, respectively. Furthermore, compared to treatment with urea alone, the application of NI increased the NUE of the MT and CT systems by an average of 55% and 46%, respectively. This study emphasized that the application of nitrapyrin should be encouraged in irrigated maize fields, in order to minimize N2O emissions and improve NUE and biomass production.


Asunto(s)
Fertilizantes , Óxido Nitroso , Agricultura , Fertilizantes/análisis , Óxido Nitroso/análisis , Picolinas , Suelo , Urea , Zea mays
6.
J Environ Qual ; 51(1): 19-32, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34846756

RESUMEN

Ecological sanitation via thermophilic composting could be a promising solution to the lack of sanitation and limited access to fertilizers, particularly in developing countries. Here, we conducted a 185-d thermophilic composting experiment with human excreta, and separately with cattle manure, mixed with kitchen scraps, teff [Eragrostis tef (Zuccagni) Trotter] straw, sawdust, and biochar (BC) by using an appropriate-technology approach. We followed the dynamics of the most important macronutrients (N, P, K), temperature, moisture, pH, electrical conductivity, cation exchange capacity, as well as content of organic matter, organic C, Ca, Mg, and micronutrients throughout the process. Low N (<47%), P (<9%), K (<11%), Ca (<18%), and Mg (<21%) losses and the temperature profile indicated a well-functioning thermophilic composting process. Compost temperature was >60 °C for 7, 6, 5, and 8 consecutive days for treatments containing human excreta, human excreta amended with BC, cattle manure, and cattle manure amended with BC, respectively, suggesting a final compost product free of pathogens. The compost mixture with cattle manure and BC reached a significantly higher temperature than the same variant without BC, with a maximum value of 65.9 °C on Day 6. For all treatments, final germination index values >100% indicated compost maturity and the absence of phytotoxic substances. Biochar addition reduced losses of organic matter (18-23%), C (33-42%), and N (49-100%) and decreased the amount of extractable NO3 - (32-36%) in the final compost. The tested ecological sanitation concept via thermophilic composting is thus a promising strategy to improve access to cheap fertilizer by safe and sustainable sanitation and waste management.


Asunto(s)
Compostaje , Animales , Bovinos , Carbón Orgánico , Humanos , Estiércol , Nitrógeno , Nutrientes , Suelo
7.
Glob Chang Biol ; 26(4): 2613-2629, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31863618

RESUMEN

The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO2 , CH4 and N2 O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH4 uptake decreased by 6.0%. Furthermore, the percentage increase in N2 O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver (Ecology Letters, 2009, 12:1103-1117). There was also greater stimulation of soil C pools (15.70 kg C ha-1  year-1 per kg N ha-1  year-1 ) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO2 /year. It also increased net soil GHG emissions by 10.20 Pg CO2 -Geq (CO2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.

8.
Glob Chang Biol ; 25(6): 2061-2076, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30884086

RESUMEN

Wetlands contain a large proportion of carbon (C) in the biosphere and partly affect climate by regulating C cycles of terrestrial ecosystems. China contains Asia's largest wetlands, accounting for about 10% of the global wetland area. Although previous studies attempted to estimate C budget in China's wetlands, uncertainties remain. We conducted a synthesis to estimate C uptake and emission of wetland ecosystems in China using a dataset compiled from published literature. The dataset comprised 193 studies, including 370 sites representing coastal, river, lake and marsh wetlands across China. In addition, C stocks of different wetlands in China were estimated using unbiased data from the China Second Wetlands Survey. The results showed that China's wetlands sequestered 16.87 Pg C (315.76 Mg C/ha), accounting for about 3.8% of C stocks in global wetlands. Net ecosystem productivity, jointly determined by gross primary productivity and ecosystem respiration, exhibited annual C sequestration of 120.23 Tg C. China's wetlands had a total gaseous C loss of 173.20 Tg C per year from soils, including 154.26 Tg CO2 -C and 18.94 Tg CH4 -C emissions. Moreover, C stocks, uptakes and gaseous losses varied with wetland types, and were affected by geographic location and climatic factors (precipitation and temperature). Our results provide better estimation of the C budget in China's wetlands and improve understanding of their contribution to the global C cycle in the context of global climate change.


Asunto(s)
Carbono , Humedales , Carbono/análisis , Ciclo del Carbono , China , Cambio Climático , Ecosistema , Suelo/química
9.
Environ Sci Technol ; 50(2): 564-72, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26710302

RESUMEN

Ammonia (NH3) released to the atmosphere leads to a cascade of impacts on the environment, yet estimation of NH3 volatilization from cropland soils (VNH3) in a broad spatial scale is still quite uncertain in China. This mainly stems from nonlinear relationships between VNH3 and relevant factors. On the basis of 495 site-years of measurements at 78 sites across Chinese croplands, we developed a nonlinear Bayesian tree regression model to determine how environmental factors modulate the local derivative of VNH3 to nitrogen application rates (Nrate) (VR, %). The VNH3-Nrate relationship was nonlinear. The VR of upland soils and paddy soils depended primarily on local water input and Nrate, respectively. Our model demonstrated good reproductions of VNH3 compared to previous models, i.e., more than 91% of the observed VR variance at sites in China and 79% of those at validation sites outside China. The observed spatial pattern of VNH3 in China agreed well with satellite-based estimates of NH3 column concentrations. The average VRs in China derived from our model were 14.8 ± 2.9% and 11.8 ± 2.0% for upland soils and paddy soils, respectively. The estimated annual NH3 emission in China (3.96 ± 0.76 TgNH3·yr(-1)) was 40% greater than that based on the IPCC Tier 1 guideline.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Amoníaco/metabolismo , Productos Agrícolas/metabolismo , China , Monitoreo del Ambiente , Modelos Biológicos , Dinámicas no Lineales
10.
J Environ Qual ; 39(1): 97-105, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20048297

RESUMEN

While water quality functions of conservation buffers established adjacent to cropped fields have been widely documented, the relative contribution of these re-established perennial plant systems to greenhouse gases has not been completely documented. In the case of methane (CH(4)), these systems have the potential to serve as sinks of CH(4) or may provide favorable conditions for CH(4) production. This study quantifies CH(4) flux from soils of riparian buffer systems comprised of three vegetation types and compares these fluxes with those of adjacent crop fields. We measured soil properties and diel and seasonal variations of CH(4) flux in 7 to 17 yr-old re-established riparian forest buffers, warm-season and cool-season grass filters, and an adjacent crop field located in the Bear Creek watershed in central Iowa. Forest buffer and grass filter soils had significantly lower bulk density (P < 0.01); and higher pH (P < 0.01), total carbon (TC) (P < 0.01), and total nitrogen (TN) (P < 0.01) than crop field soils. There was no significant relationship between CH(4) flux and soil moisture or soil temperature among sites within the range of conditions observed. Cumulative CH(4) flux was -0.80 kg CH(4)-C ha(-1) yr(-1) in the cropped field, -0.46 kg CH(4)-C ha(-1) yr(-1) within the forest buffers, and 0.04 kg CH(4)-C ha(-1) yr(-1) within grass filters, but difference among vegetation covers was not significant. Results suggest that CH(4) flux was not changed after establishment of perennial vegetation on cropped soils, despite significant changes in soil properties.


Asunto(s)
Metano/química , Metano/metabolismo , Ríos , Suelo/análisis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Agricultura , Ecosistema , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA