Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Biol Toxicol ; 35(6): 589, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31111276

RESUMEN

AbstractThe original version of this article unfortunately contained a mistake in the article title.

2.
Cell Biol Toxicol ; 35(5): 457-470, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30721374

RESUMEN

Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, and the function is linked to cellular metabolism including mitochondrial biogenesis. Hepatic L-serine concentration is decreased significantly in fatty liver disease. We reported that the supplementation of the amino acid ameliorated the alcoholic fatty liver by enhancing L-serine-dependent homocysteine metabolism. In this study, we hypothesized that the metabolic production of NAD+ from L-serine and thus activation of SIRT1 contribute to the action of L-serine. To this end, we evaluated the effects of L-serine on SIRT1 activity and mitochondria biogenesis in C2C12 myotubes. L-Serine increased intracellular NAD+ content and led to the activation of SIRT1 as determined by p53 luciferase assay and western blot analysis of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) acetylation. L-Serine treatment increased the expression of the genes associated with mitochondrial biogenesis and enhanced mitochondrial mass and function. In addition, L-serine reversed cellular insulin resistance determined by insulin-induced phosphorylation of Akt and GLUT4 expression and membrane translocation. L-Serine-induced mitochondrial gene expression, fatty acid oxidation, and insulin sensitization were mediated by enhanced SIRT1 activity, which was verified by selective SIRT1 inhibitor (Ex-527) and siRNA directed to SIRT1. L-Serine effect on cellular NAD+ level is dependent on the L-serine metabolism to pyruvate that is subsequently converted to lactate by lactate dehydrogenase. In summary, these data suggest that L-serine increases cellular NAD+ level and thus SIRT1 activity in C2C12 myotubes.


Asunto(s)
Ácidos Grasos/metabolismo , Resistencia a la Insulina/fisiología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Serina/farmacología , Sirtuina 1/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA C-Aciltransferasa/metabolismo , Acetilación , Animales , Isomerasas de Doble Vínculo Carbono-Carbono/metabolismo , Línea Celular , Enoil-CoA Hidratasa/metabolismo , Células Hep G2 , Humanos , Insulina/farmacología , Metabolismo de los Lípidos , Ratones , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/citología , Músculo Esquelético/metabolismo , Oxidación-Reducción , Fosforilación , Racemasas y Epimerasas/metabolismo , Transducción de Señal/efectos de los fármacos , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
3.
Toxicol In Vitro ; 34: 138-145, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27064126

RESUMEN

Hyperhomocysteinemia is an independent risk factor for several cardiovascular diseases. The use of vitamins to modulate homocysteine metabolism substantially lowers the risk by reducing plasma homocysteine levels. In this study, we evaluated the effects of l-serine and related amino acids on homocysteine-induced endoplasmic reticulum (ER) stress and endothelial cell damage using EA.hy926 human endothelial cells. Homocysteine treatment decreased cell viability and increased apoptosis, which were reversed by cotreatment with l-serine. l-Serine inhibited homocysteine-induced ER stress as verified by decreased glucose-regulated protein 78kDa (GRP78) and C/EBP homologous protein (CHOP) expression as well as X-box binding protein 1 (xbp1) mRNA splicing. The effects of l-serine on homocysteine-induced ER stress are not attributed to intracellular homocysteine metabolism, but instead to decreased homocysteine uptake. Glycine exerted effects on homocysteine-induced ER stress, apoptosis, and cell viability that were comparable to those of l-serine. Although glycine did not affect homocysteine uptake or export, coincubation of homocysteine with glycine for 24h reduced the intracellular concentration of homocysteine. Taken together, l-serine and glycine cause homocysteine-induced endothelial cell damage by reducing the level of intracellular homocysteine. l-Serine acts by competitively inhibiting homocysteine uptake in the cells. However, the mechanism(s) by which glycine lowers homocysteine levels are unclear.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Glicina/farmacología , Homocisteína/toxicidad , Serina/farmacología , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cistationina betasintasa/metabolismo , Chaperón BiP del Retículo Endoplásmico , Células Endoteliales/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Interferencia de ARN , ARN Interferente Pequeño/genética , Factor de Transcripción CHOP/metabolismo , Proteína 1 de Unión a la X-Box/genética
4.
J Pharmacol Exp Ther ; 355(3): 362-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26384859

RESUMEN

Liver X receptor (LXR) is a member of the nuclear receptor superfamily, and it regulates various biologic processes, including de novo lipogenesis, cholesterol metabolism, and inflammation. Selective inhibition of LXR may aid the treatment of nonalcoholic fatty liver diseases. In the present study, we evaluated the effects of three cinnamamide derivatives on ligand-induced LXRα activation and explored whether these derivatives could attenuate steatosis in mice. N-(4-trifluoromethylphenyl) 3,4-dimethoxycinnamamide (TFCA) decreased the luciferase activity in LXRE-tk-Luc-transfected cells and also suppressed ligand-induced lipid accumulation and expression of the lipogenic genes in murine hepatocytes. Furthermore, it significantly attenuated hepatic neutral lipid accumulation in a ligand-induced fatty liver mouse system. Modeling study indicated that TFCA inhibited activation of the LXRα ligand-binding domain by hydrogen bonding to Arg305 in the H5 region of that domain. It regulated the transcriptional control exerted by LXRα by influencing coregulator exchange; this process involves dissociation of the thyroid hormone receptor-associated proteins (TRAP)/DRIP coactivator and recruitment of the nuclear receptor corepressor. These results show that TFCA has the potential to attenuate ligand-induced lipogenesis and fatty liver by selectively inhibiting LXRα in the liver.


Asunto(s)
Cinamatos/farmacología , Hígado Graso/prevención & control , Lipogénesis/efectos de los fármacos , Receptores Nucleares Huérfanos/antagonistas & inhibidores , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Adipogénesis , Animales , Línea Celular , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Ligandos , Metabolismo de los Lípidos/efectos de los fármacos , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatasa Ácida Tartratorresistente , Transfección , Triglicéridos/metabolismo
5.
Arch Toxicol ; 89(4): 579-89, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24853400

RESUMEN

Pregnane X receptor (PXR) is a nuclear receptor that plays a key regulatory role in xenobiotic metabolism in a ligand-dependent manner. Recently, ethanol was reported to be either an inducer or inhibitor of Cytochrome P450 (CYP) 3A expression. According to our recent microarray data, chronic ethanol upregulates the expression of the genes associated with oxidative phase I drug metabolism, phase II conjugation reaction and phase III xenobiotic transport, most of which are known to be regulated by PXR. In this study, we investigated the effects of chronic ethanol on the expression and activity of CYP3A11 in mice and the role of PXR. Ethanol was administrated to male ICR mice by feeding a standard Lieber-DeCarli diet containing 36 % ethanol for 4 weeks. Ethanol significantly increased hepatic mRNA expression of Pxr and Cyp3a11. Treatment of mice with ethanol increased nuclear translocation of PXR. Consistent with the increase in nuclear PXR, ethanol significantly increased the binding of PXR to the Cyp3a11 promoter. Hepatic cholesterol level and bile acid synthesis are increased by ethanol treatment. The level of some cholesterol metabolites, such as 5ß-cholestane-3α,7α,12α-triol, 7α-hydroxy-4-cholestene-3-one and lithocholic acid, that have been identified as potent PXR agonists are increased in the livers of ethanol-treated mice. In summary, chronic ethanol upregulates the expression of Pxr and Cyp3a11 mRNAs and proteins in mice by PXR activation mediated by enhanced cholesterol metabolism and bile acid synthesis. Our data provide some critical information needed to understand the molecular mechanisms of ethanol-induced CYP3A expression.


Asunto(s)
Colesterol/metabolismo , Citocromo P-450 CYP3A/genética , Etanol/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Proteínas de la Membrana/genética , Receptores de Esteroides/genética , Animales , Western Blotting , Dominio Catalítico , Colestanoles/metabolismo , Colestenonas/metabolismo , Inmunoprecipitación de Cromatina , Citocromo P-450 CYP3A/metabolismo , Relación Dosis-Respuesta a Droga , Etanol/administración & dosificación , Etanol/farmacocinética , Ligandos , Ácido Litocólico/metabolismo , Hígado/enzimología , Masculino , Proteínas de la Membrana/metabolismo , Fase I de la Desintoxicación Metabólica , Fase II de la Desintoxicación Metabólica , Ratones Endogámicos ICR , Receptor X de Pregnano , Receptores de Esteroides/metabolismo , Factores de Tiempo
6.
Arch Pharm Res ; 37(9): 1169-76, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24633463

RESUMEN

Non-alcoholic fatty liver disease is associated with inhibited AMP-activated kinase (AMPK) and activation of sterol regulatory element binding protein 1 (SREBP-1). AMPK phosphorylation inhibits SREBP-1, a major transcription factor of de novo lipogenesis, by inhibiting the liver X receptor (LXR) or by direct phosphorylation. Resveratrol, a polyphenol, has regulatory effects on hepatic lipid metabolism as a potent AMPK activator. In this study, we evaluated the anti-steatogenic effects of resveratrol and its derivatives and identified the molecular mechanism in vitro and in vivo. Resveratrol and its derivatives decreased lipid accumulation by free fatty acids (FFA mixture; 0.5 mM, oleic acid:palmitic acid = 2: 1) in H4IIEC3 cells. Synthesized derivatives of resveratrol had lower cytotoxicity than the parental molecule with similar potency. SY-102 suppressed SREBP-1 maturation by T0901317, an LXR agonist, and decreased SRE luciferase activity and the mRNA levels of lipogenic genes. Inhibition of AMPK by pre-treatment with compound C completely blocked the effects of SY-102. To evaluate their efficacy in vivo, mice were fed a high-fat diet for 5 days, and resveratrol or SY-102 was administered orally for the last 2 days. Oral administration of the SY-102 increased AMPK phosphorylation, followed by reduced hepatic triglyceride accumulation to a similar extent as resveratrol. These data demonstrate that SY-102, a synthesized derivative of resveratrol, might provide a promising therapeutic effect against fatty liver disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hepatocitos/efectos de los fármacos , Lipotrópicos/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Estilbenos/uso terapéutico , Proteínas Quinasas Activadas por AMP/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Ácidos Grasos no Esterificados/efectos adversos , Ácidos Grasos no Esterificados/antagonistas & inhibidores , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/metabolismo , Humanos , Lipotrópicos/efectos adversos , Lipotrópicos/farmacología , Masculino , Metilación , Ratones Endogámicos ICR , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Distribución Aleatoria , Ratas , Resveratrol , Organismos Libres de Patógenos Específicos , Estilbenos/efectos adversos , Estilbenos/química , Estilbenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA