Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Occup Environ Hyg ; 12(7): 421-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25636081

RESUMEN

The inhalation of toxic substances is a major threat to the health of miners, and dust containing respirable crystalline silica (α-quartz) is of particular concern, due to the recent rise in cases of coal workers' pneumoconiosis and silicosis in some U.S. mining regions. Currently, there is no field-portable instrument that can measure airborne α-quartz and give miners timely feedback on their exposure. The U.S. National Institute for Occupational Safety and Health (NIOSH) is therefore conducting studies to investigate technologies capable of end-of-shift or real-time measurement of airborne quartz. The present study focuses on the potential application of Fourier transform infrared (FT-IR) spectrometry conducted in the diffuse reflection (DR) mode as a technique for measuring α-quartz in respirable mine dust. A DR accessory was used to analyze lab-generated respirable samples of Min-U-Sil 5 (which contains more than 90% α-quartz) and coal dust, at mass loadings in the ranges of 100-600 µg and 600-5300 µg, respectively. The dust samples were deposited onto three different types of filters, borosilicate fiberglass, nylon, and polyvinyl chloride (PVC). The reflectance, R, was calculated by the ratio of a blank filter and a filter with deposited mine dust. Results suggest that for coal and pure quartz dusts deposited on 37 mm PVC filters, measurements of -log R correlate linearly with known amounts of quartz on filters, with R(2) values of approximately 0.99 and 0.94, respectively, for samples loaded up to ∼4000 µg. Additional tests were conducted to measure quartz in coal dusts deposited onto the borosilicate fiberglass and nylon filter media used in the NIOSH-developed Personal Dust Monitor (PDM). The nylon filter was shown to be amenable to DR analysis, but quantification of quartz is more accurate when the filter is "free," as opposed to being mounted in the PDM filter holder. The borosilicate fiberglass filters were shown to produce excessive interference, making quartz quantification impossible. It was concluded that, while the DR/FT-IR method is potentially useful for on-filter measurement of quartz in dust samples, the use of PVC filters produced the most accurate results.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Carbón Mineral/análisis , Polvo/análisis , Cuarzo/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Filtros de Aire , Minas de Carbón , National Institute for Occupational Safety and Health, U.S. , Exposición Profesional/análisis , Estados Unidos
2.
Rev Sci Instrum ; 85(8): 086109, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25173334

RESUMEN

A novel titanium reaction cell has been constructed for the study of water-rock-CO2 reactions. The reaction cell has been used within a direct-sampling rocking autoclave and offers certain advantages over traditional "flexible gold/titanium cell" approaches. The main advantage is robustness, as flexible cells are prone to rupture on depressurisation during gas-rich experiments. The reaction cell was tested in experiments during an inter-laboratory comparison study, in which mineral kinetic data were determined. The cell performed well during experiments up to 130 °C and 300 bars pressure. The data obtained were similar to those of other laboratories participating in the study, and also to previously published data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA