Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; 9(4)2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042200

RESUMEN

Motility is an important virulence trait for many bacterial pathogens, allowing them to position themselves in appropriate locations at appropriate times. The motility structures type IV pili and flagella are also involved in sensing surface contact, which modulates pathogenicity. In Pseudomonas aeruginosa, the PilS-PilR two-component system (TCS) regulates expression of the type IV pilus (T4P) major subunit PilA, while biosynthesis of the single polar flagellum is regulated by a hierarchical system that includes the FleSR TCS. Previous studies of Geobacter sulfurreducens and Dichelobacter nodosus implicated PilR in regulation of non-T4P-related genes, including some involved in flagellar biosynthesis. Here we used transcriptome sequencing (RNA-seq) analysis to identify genes in addition to pilA with changes in expression in the absence of pilR Among the genes identified were 10 genes whose transcription increased in the pilA mutant but decreased in the pilR mutant, despite both mutants lacking T4P and pilus-related phenotypes. The products of these inversely dysregulated genes, many of which were hypothetical, may be important for virulence and surface-associated behaviors, as mutants had altered swarming motility, biofilm formation, type VI secretion system expression, and pathogenicity in a nematode model. Further, the PilSR TCS positively regulated transcription of fleSR, and thus many genes in the FleSR regulon. As a result, pilSR deletion mutants had defects in swimming motility that were independent of the loss of PilA. Together, these data suggest that in addition to controlling T4P expression, PilSR could have a broader role in the regulation of P. aeruginosa motility and surface sensing behaviors.IMPORTANCE Surface appendages such as type IV pili and flagella are important for establishing surface attachment and infection in a host in response to appropriate cues. The PilSR regulatory system that controls type IV pilus expression in Pseudomonas aeruginosa has an established role in expression of the major pilin PilA. Here we provide evidence supporting a new role for PilSR in regulating flagellum-dependent swimming motility in addition to pilus-dependent twitching motility. Further, even though both pilA and pilR mutants lack PilA and pili, we identified sets of genes downregulated in the pilR mutant and upregulated in a pilA mutant as well as genes downregulated only in a pilR mutant, independent of pilus expression. This finding suggests that change in the inner membrane levels of PilA is only one of the cues to which PilR responds to modulate gene expression. Identification of PilR as a regulator of multiple motility pathways may make it an interesting therapeutic target for antivirulence compounds.


Asunto(s)
Proteínas Bacterianas/genética , Flagelos/fisiología , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Factores de Transcripción/genética , Regulación hacia Abajo , Proteínas Fimbrias/genética , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Movimiento , Activación Transcripcional , Regulación hacia Arriba
2.
PLoS Pathog ; 14(5): e1007074, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29775484

RESUMEN

Type IV pili are expressed by a wide range of prokaryotes, including the opportunistic pathogen Pseudomonas aeruginosa. These flexible fibres mediate twitching motility, biofilm maturation, surface adhesion, and virulence. The pilus is composed mainly of major pilin subunits while the low abundance minor pilins FimU-PilVWXE and the putative adhesin PilY1 prime pilus assembly and are proposed to form the pilus tip. The minor pilins and PilY1 are encoded in an operon that is positively regulated by the FimS-AlgR two-component system. Independent of pilus assembly, PilY1 was proposed to be a mechanosensory component that-in conjunction with minor pilins-triggers up-regulation of acute virulence phenotypes upon surface attachment. Here, we investigated the link between the minor pilins/PilY1 and virulence. pilW, pilX, and pilY1 mutants had reduced virulence towards Caenorhabditis elegans relative to wild type or a major pilin mutant, implying a role in pathogenicity that is independent of pilus assembly. We hypothesized that loss of specific minor pilins relieves feedback inhibition on FimS-AlgR, increasing transcription of the AlgR regulon and delaying C. elegans killing. Reporter assays confirmed that FimS-AlgR were required for increased expression of the minor pilin operon upon loss of select minor pilins. Overexpression of AlgR or its hyperactivation via a phosphomimetic mutation reduced virulence, and the virulence defects of pilW, pilX, and pilY1 mutants required FimS-AlgR expression and activation. We propose that PilY1 and the minor pilins inhibit their own expression, and that loss of these proteins leads to FimS-mediated activation of AlgR that suppresses expression of acute-phase virulence factors and delays killing. This mechanism could contribute to adaptation of P. aeruginosa in chronic lung infections, as mutations in the minor pilin operon result in the loss of piliation and increased expression of AlgR-dependent virulence factors-such as alginate-that are characteristic of such infections.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Fimbrias/fisiología , Pseudomonas aeruginosa/patogenicidad , Transactivadores/metabolismo , Alelos , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Clonación Molecular , Proteínas Fimbrias/genética , Expresión Génica , Mutación/genética , Operón/fisiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Transactivadores/genética , Técnicas del Sistema de Dos Híbridos , Virulencia
3.
J Bacteriol ; 199(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28583947

RESUMEN

FimV is a Pseudomonas aeruginosa inner membrane hub protein that modulates levels of the second messenger, cyclic AMP (cAMP), through the activation of adenylate cyclase CyaB. Although type IVa pilus (T4aP)-dependent twitching motility is modulated by cAMP levels, mutants lacking FimV are twitching impaired, even when exogenous cAMP is provided. Here we further define FimV's cAMP-dependent and -independent regulation of twitching. We confirmed that the response regulator of the T4aP-associated Chp chemotaxis system, PilG, requires both FimV and the CyaB regulator, FimL, to activate CyaB. However, in cAMP-replete backgrounds-lacking the cAMP phosphodiesterase CpdA or the CheY-like protein PilH or expressing constitutively active CyaB-pilG and fimV mutants failed to twitch. Both cytoplasmic and periplasmic domains of FimV were important for its cAMP-dependent and -independent roles, while its septal peptidoglycan-targeting LysM motif was required only for twitching motility. Polar localization of the sensor kinase PilS, a key regulator of transcription of the major pilin, was FimV dependent. However, unlike its homologues in other species that localize flagellar system components, FimV was not required for swimming motility. These data provide further evidence to support FimV's role as a key hub protein that coordinates the polar localization and function of multiple structural and regulatory proteins involved in P. aeruginosa twitching motility.IMPORTANCEPseudomonas aeruginosa is a serious opportunistic pathogen. Type IVa pili (T4aP) are important for its virulence, because they mediate dissemination and invasion via twitching motility and are involved in surface sensing, which modulates pathogenicity via changes in cAMP levels. Here we show that the hub protein FimV and the response regulator of the Chp system, PilG, regulate twitching independently of their roles in the modulation of cAMP synthesis. These functions do not require the putative scaffold protein FimL, proposed to link PilG with FimV. PilG may regulate asymmetric functioning of the T4aP system to allow for directional movement, while FimV appears to localize both structural and regulatory elements-including the PilSR two-component system-to cell poles for optimal function.


Asunto(s)
AMP Cíclico/metabolismo , Proteínas Fimbrias/metabolismo , Locomoción , Pseudomonas aeruginosa/fisiología , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Pseudomonas aeruginosa/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(21): 6017-22, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162347

RESUMEN

Type IV pili are important virulence factors for many pathogens, including Pseudomonas aeruginosa Transcription of the major pilin gene-pilA-is controlled by the PilS-PilR two-component system in response to unknown signals. The absence of a periplasmic sensing domain suggested that PilS may sense an intramembrane signal, possibly PilA. We suggest that direct interactions between PilA and PilS in the inner membrane reduce pilA transcription when PilA levels are high. Overexpression in trans of PilA proteins with diverse and/or truncated C termini decreased native pilA transcription, suggesting that the highly conserved N terminus of PilA was the regulatory signal. Point mutations in PilA or PilS that disrupted their interaction prevented autoregulation of pilA transcription. A subset of PilA point mutants retained the ability to interact with PilS but could no longer decrease pilA transcription, suggesting that interaction between the pilin and sensor kinase is necessary but not sufficient for pilA autoregulation. Furthermore, PilS's phosphatase motif was required for the autoregulation of pilA transcription, suggesting that under conditions where PilA is abundant, the PilA-PilS interaction promotes PilR dephosphorylation and thus down-regulation of further pilA transcription. These data reveal a clever bacterial inventory control strategy in which the major subunit of an important P. aeruginosa virulence factor controls its own expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Fimbrias/biosíntesis , Regulación Bacteriana de la Expresión Génica/fisiología , Regiones Promotoras Genéticas/fisiología , Pseudomonas aeruginosa/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Proteínas Bacterianas/genética , Proteínas Fimbrias/genética , Mutación , Fosforilación/fisiología , Pseudomonas aeruginosa/genética , Factores de Transcripción/genética
5.
Int J Med Microbiol ; 301(7): 591-601, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21873113

RESUMEN

Francisella tularensis is pathogenic for many mammalian species including humans, causing a spectrum of diseases called tularemia. The highly virulent Type A strains have associated mortality rates of up to 60% if inhaled. An attenuated live vaccine strain (LVS) is the only vaccine to show efficacy in humans, but suffers several barriers to licensure, including the absence of a correlate of protection. An immunoproteomics approach was used to survey the repertoire of antibodies in sera from individuals who had contracted tularemia during two outbreaks and individuals from two geographical areas who had been vaccinated with NDBR Lot 11 or Lot 17 LVS. These data showed a large overlap in the antibodies generated in response to tularemia infection or LVS vaccination. A total of seven proteins were observed to be reactive with 60% or more sera from vaccinees and convalescents. A further four proteins were recognised by 30-60% of the sera screened. These proteins have the potential to serve as markers of vaccination or candidates for subunit vaccines.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Vacunas Bacterianas/inmunología , Francisella tularensis/inmunología , Proteoma/análisis , Tularemia/inmunología , Humanos , Vacunas Atenuadas/inmunología
6.
J Bacteriol ; 193(19): 5498-509, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21803994

RESUMEN

In Francisella tularensis subsp. tularensis, DsbA has been shown to be an essential virulence factor and has been observed to migrate to multiple protein spots on two-dimensional electrophoresis gels. In this work, we show that the protein is modified with a 1,156-Da glycan moiety in O-linkage. The results of mass spectrometry studies suggest that the glycan is a hexasaccharide, comprised of N-acetylhexosamines, hexoses, and an unknown monosaccharide. Disruption of two genes within the FTT0789-FTT0800 putative polysaccharide locus, including a galE homologue (FTT0791) and a putative glycosyltransferase (FTT0798), resulted in loss of glycan modification of DsbA. The F. tularensis subsp. tularensis ΔFTT0798 and ΔFTT0791::Cm mutants remained virulent in the murine model of subcutaneous tularemia. This indicates that glycosylation of DsbA does not play a major role in virulence under these conditions. This is the first report of the detailed characterization of the DsbA glycan and putative role of the FTT0789-FTT0800 gene cluster in glycan biosynthesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Francisella tularensis/metabolismo , Francisella tularensis/patogenicidad , Tularemia/microbiología , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Electroforesis en Gel Bidimensional , Femenino , Francisella tularensis/genética , Glicosilación , Ratones , Ratones Endogámicos BALB C , Familia de Multigenes/genética , Familia de Multigenes/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tularemia/genética , Virulencia/genética , Virulencia/fisiología , Factores de Virulencia/genética
7.
Front Microbiol ; 1: 143, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21687770

RESUMEN

Francisella tularensis is the causative agent of a spectrum of diseases collectively known as tularemia. The extreme virulence of the pathogen in humans, combined with the low infectious dose and the ease of dissemination by aerosol have led to concerns about its abuse as a bioweapon. Until recently, nothing was known about the virulence mechanisms and even now, there is still a relatively poor understanding of pathogen virulence. Completion of increasing numbers of Francisella genome sequences, combined with comparative genomics and proteomics studies, are contributing to the knowledge in this area. Tularemia may be treated with antibiotics, but there is currently no licensed vaccine. An attenuated strain, the Live Vaccine Strain (LVS) has been used to vaccinate military and at risk laboratory personnel, but safety concerns mean that it is unlikely to be licensed by the FDA for general use. Little is known about the protective immunity induced by vaccination with LVS, in humans or animal models. Immunoproteomics studies with sera from infected humans or vaccinated mouse strains, are being used in gel-based or proteome microarray approaches to give insight into the humoral immune response. In addition, these data have the potential to be exploited in the identification of new diagnostic or protective antigens, the design of next generation live vaccine strains, and the development of subunit vaccines. Herein, we briefly review the current knowledge from Francisella comparative proteomics studies and then focus upon the findings from immunoproteomics approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA