Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39201725

RESUMEN

It is still unclear whether or how quercetin influences the toxic events induced by acetaldehyde in hepatocytes, though quercetin has been reported to mitigate alcohol-induced mouse liver injury. In this study, we evaluated the modulating effect of quercetin on the cytotoxicity induced by acetaldehyde in mouse hepatoma Hepa1c1c7 cells, the frequently used cellular hepatocyte model. The pretreatment with quercetin significantly inhibited the cytotoxicity induced by acetaldehyde. The treatment with quercetin itself had an ability to enhance the total ALDH activity, as well as the ALDH1A1 and ALDH3A1 gene expressions. The acetaldehyde treatment significantly enhanced the intracellular reactive oxygen species (ROS) level, whereas the quercetin pretreatment dose-dependently inhibited it. Accordingly, the treatment with quercetin itself significantly up-regulated the representative intracellular antioxidant-related gene expressions, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase, catalytic subunit (GCLC), and cystine/glutamate exchanger (xCT), that coincided with the enhancement of the total intracellular glutathione (GSH) level. Tin protoporphyrin IX (SNPP), a typical HO-1 inhibitor, restored the quercetin-induced reduction in the intracellular ROS level, whereas buthionine sulphoximine, a representative GSH biosynthesis inhibitor, did not. SNPP also cancelled the quercetin-induced cytoprotection against acetaldehyde. These results suggest that the low-molecular-weight antioxidants produced by the HO-1 enzymatic reaction are mainly attributable to quercetin-induced cytoprotection.


Asunto(s)
Acetaldehído , Antioxidantes , Glutatión , Hemo-Oxigenasa 1 , Hepatocitos , Quercetina , Especies Reactivas de Oxígeno , Acetaldehído/toxicidad , Acetaldehído/farmacología , Quercetina/farmacología , Animales , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Ratones , Hemo-Oxigenasa 1/metabolismo , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Línea Celular Tumoral , Glutamato-Cisteína Ligasa/metabolismo , Glutamato-Cisteína Ligasa/genética
2.
Free Radic Res ; 56(9-10): 607-616, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36576903

RESUMEN

3,4-Dihydroxyphenylacetic acid (DOPAC) and 3-hydroxyphenylacetic acid (OPAC) are the predominant catabolites of quercetin glycosides, such as quercetin 4'-O-ß-glucoside from the onion, produced by intestinal microbiota. Although each catabolite has been reported to protect the cells from acetaldehyde-induced cytotoxicity, the effect of their combination remains to be clarified. The purpose of this study was to determine whether the combination of DOPAC and OPAC enhances the resistance against the acetaldehyde-induced oxidative stress in the cultured hepatocytes. The pretreatment of the combination of DOPAC (5 µM) and OPAC (5 µM) showed significant protection against the acetaldehyde- and hydrogen peroxide-induced cytotoxicity, even though each compound at the same concentration did not. This combination also significantly inhibited the intracellular dichlorofluorescin diacetate-detectable reactive oxygen species (ROS) level, whereas the solo treatment did slightly, suggesting that reducing mechanisms of ROS or compounds that enhance ROS production are involved in the cytoprotective effect. The combinatory treatment significantly enhanced the gene expression of not only the aldehyde dehydrogenases (ALDHs), but also glutamate-cysteine ligase, catalytic subunit, the first rate-limiting enzyme of glutathione (GSH) synthesis. Accordingly, both the intracellular GSH level and the total ALDH activity were enhanced by DOPAC plus OPAC. Involvement of GSH in the cytoprotection as well as ALDH up-regulation by the combination was confirmed by the experiments using a GSH biosynthesis inhibitor, buthionine sulfoximine. Taken together, the present results suggested that the quercetin microbiota catabolites concertedly protect the cells from acetaldehyde through a pre-enhanced resistance against oxidative stress by the GSH-dependent up-regulation of ALDHs.


Asunto(s)
Microbiota , Quercetina , Quercetina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Glicósidos/farmacología , Ácido 3,4-Dihidroxifenilacético/farmacología , Acetaldehído , Estrés Oxidativo , Glutatión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA