Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 2675, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29992967

RESUMEN

Graphene is considered a record-performance nonlinear-optical material on the basis of numerous experiments. The observed strong nonlinear response ascribed to the refractive part of graphene's electronic third-order susceptibility χ(3) cannot, however, be explained using the relatively modest χ(3) value theoretically predicted for the 2D material. Here we solve this long-standing paradox and demonstrate that, rather than χ(3)-based refraction, a complex phenomenon which we call saturable photoexcited-carrier refraction is at the heart of nonlinear-optical interactions in graphene such as self-phase modulation. Saturable photoexcited-carrier refraction is found to enable self-phase modulation of picosecond optical pulses with exponential-like bandwidth growth along graphene-covered waveguides. Our theory allows explanation of these extraordinary experimental results both qualitatively and quantitatively. It also supports the graphene nonlinearities measured in previous self-phase modulation and self-(de)focusing (Z-scan) experiments. This work signifies a paradigm shift in the understanding of 2D-material nonlinearities and finally enables their full exploitation in next-generation nonlinear-optical devices.

2.
Opt Express ; 26(11): 14315-14328, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29877472

RESUMEN

We discuss the design and characterization of a micro ring laser with on-chip filtered optical feedback. The laser and feedback section have been fabricated on a generic photonic integration platform using only standard building blocks. The filtering process in the feedback scheme is based on the reflection from a distributed Bragg reflector. We include several control pads in the feedback section which allows us to control separately the wavelength, the strength and the phase of the filtered feedback. By controlling the phase of the feedback, we can fine-tune the longitudinal mode selection and wavelength of the laser output, while changing the strength of the feedback allows us to control the power distribution between the two directions of the micro ring laser. Numerical simulations reproduce our experimental observations.

3.
Chaos ; 27(11): 114310, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29195297

RESUMEN

We discuss the design and testing of a laser integrated with a long on-chip optical feedback section. The device and feedback section have been fabricated on a generic photonic integration platform using only standard building blocks. We have been able to integrate a 10 cm feedback length on a footprint of 5.5 mm2. By controlling the amount of feedback, we achieve chaotic dynamics in the long-cavity regime and show that the resulting dynamics is sufficiently complex in order to generate random bits based on the chaotic intensity fluctuation at a rate of 500 Mbits/s.

4.
Opt Express ; 25(1): 339-350, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-28085828

RESUMEN

With the development of new applications using semiconductor ring lasers (SRLs) subject to optical feedback, the stability properties of their outputs becomes a crucial issue. We propose a systematic bifurcation analysis in order to properly identify the best parameter ranges for either steady or self-pulsating periodic regimes. Unlike conventional semiconductor lasers, we show that SRLs exhibit both types of outputs for large and well defined ranges of the feedback strength. We determine the stability domains in terms of the pump parameter and the feedback phase. We find that the feedback phase is a key parameter to achieve a stable steady output. We demonstrate that the self-pulsating regime results from a particular Hopf bifurcation mechanism referred to as bifurcation bridges. These bridges connect two distinct external cavity modes and are fully stable, a scenario that was not possible for diode lasers under the same conditions.

5.
Opt Lett ; 39(20): 5945-8, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25361126

RESUMEN

We numerically show the quantitative relation between the chaos bandwidth enhancement and fast phase dynamics in semiconductor lasers with optical feedback and optical injection. The injection increases the coupling between the intensity and the phase leading to a competition between the relaxation oscillation (RO) frequency and the intrinsic response frequency of the phase. For large feedback strengths, it is found that the chaos bandwidth is determined by the intrinsic phase response frequency. For smaller feedback strengths, the system is not chaotic and its bandwidth is determined by the RO frequency.

6.
Opt Lett ; 38(14): 2608-10, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23939125

RESUMEN

We report on an integrated approach to obtain multiwavelength emission from semiconductor ring lasers with filtered optical feedback. The filtered feedback is realized on-chip employing two arrayed-waveguide gratings to split/recombine light into different wavelength channels. Through experimental observations and numerical simulations, we find that the effective gain of the different modes is the key parameter which has to be balanced in order to achieve multiwavelength emission. This can be achieved by tuning the injection current in each amplifier.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA