Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pol J Microbiol ; 73(2): 131-142, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38700908

RESUMEN

This study aimed to investigate azole resistance mechanisms in Aspergillus flavus, which involve cyp51A and cyp51B genes. Real-time Reverse Transcriptase qPCR method was applied to determine the overexpression of cyp51A and cyp51B genes for 34 A. flavus isolates. PCR sequencing of these two genes was used to detect the presence of gene mutations. Susceptibility test found sensitivity to voriconazole (VOR) in all strains. 14.7% and 8.8% of isolates were resistant to itraconazole (IT) and posaconazole (POS), respectively, with a cross-resistance in 5.8%. For the double resistant isolates (IT/POS), the expression of cyp51A was up to 17-fold higher. PCR sequencing showed the presence of 2 mutations in cyp51A: a synonymous point mutation (P61P) in eight isolates, which did not affect the structure of CYP51A protein, and another non synonymous mutation (G206L) for only the TN-33 strain (cross IT/POS resistance) causing an amino acid change in the protein sequence. However, we noted in cyp51B the presence of the only non-synonymous mutation (L177G) causing a change in amino acids in the protein sequence for the TN-31 strain, which exhibits IT/POS cross-resistance. A short single intron of 67 bp was identified in the cyp51A gene, whereas three short introns of 54, 53, and 160 bp were identified in the cyp51B gene. According to the models provided by PatchDock software, the presence of non-synonymous mutations did not affect the interaction of CYP51A and CYP51B proteins with antifungals. In our study, the overexpression of the cyp51A and cyp51B genes is the primary mechanism responsible for resistance in A. flavus collection. Nevertheless, other resistance mechanisms can be involved.


Asunto(s)
Antifúngicos , Aspergillus flavus , Azoles , Sistema Enzimático del Citocromo P-450 , Farmacorresistencia Fúngica , Proteínas Fúngicas , Pruebas de Sensibilidad Microbiana , Aspergillus flavus/genética , Aspergillus flavus/efectos de los fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica/genética , Antifúngicos/farmacología , Azoles/farmacología , Humanos , Aspergilosis/microbiología , Mutación , Voriconazol/farmacología , Triazoles/farmacología
2.
Pol J Microbiol ; 71(4): 529-538, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36473111

RESUMEN

Seventy-seven strains of Malassezia were included in this study. Biofilm and hydrolytic enzyme production were studied by using specific solid media. The Real-Time reverse transcriptase qPCR method was applied to determine the overexpression of genes encoding the extracellular enzymes. All included Malassezia species produced biofilms. No statistically significant difference was observed between Malassezia species in biofilm formation (p = 0.567). All Malassezia species produced lipase, and 95% of Malassezia globosa showed a strong enzymatic activity (Pz = 0.55 ± 0.02). A statistically significant difference was observed between the mean keratinase indices of Malassezia slooffiae and the other Malassezia species (p = 0.005). The overexpression of one or more genes was observed in 100% of strains isolated from patients with folliculitis, 87.5% - with pityriasis versicolor, and 57.14% of the control group isolates. A statistically significant difference in the lipase gene expression (p = 0.042) was between the strains from patients with folliculitis and the control group. This investigation provides more information about the frequency of the production of the major enzymes considered virulence factors of Malassezia species. Interestingly, the overexpression of one or more genes was observed in strains isolated from patients with Malassezia disorders.


Asunto(s)
Foliculitis , Malassezia , Tiña Versicolor , Humanos , Malassezia/genética , Factores de Virulencia , Lipasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA