Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 47(24): 6321-6324, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36538428

RESUMEN

We designed and tested a distributed acoustic sensing (DAS) that co-exists with optical communication over a two-mode fiber (TMF). In particular, we excited both linearly polarized (LP) modes, LP01 and LP11a, using a photonic lantern for simultaneous information signal transmission while collecting the backscattered Rayleigh light at the near end of the fiber to detect vibrations from a predetermined source. While transmitting data using on-off keying (OOK) or orthogonal frequency-division multiplexing (OFDM) modulation schemes, the optical fiber DAS offers high signal-to-noise ratio (SNR) values that are always larger than the minimum acceptable 2 dB SNR. In addition, as a proof-of-concept experiment, we report parallel sensing and OFDM transmission achieving a data rate of up to 4.2 Gb/s with a bit error rate (BER) of 3.2 × 10-3.

2.
Opt Lett ; 45(3): 742-745, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32004299

RESUMEN

In this Letter, we demonstrate a novel distributed-feedback (DFB) InGaN-based laser diode with narrow-linewidth emission at ∼480nm (sky blue) and its application to high-speed visible-light communication (VLC). A significant side-mode suppression ratio (SMSR) of 42.4 dB, an optical power of ∼14mW, and a resolution-limited linewidth of ∼34pm were obtained under continuous-wave operation. A 5-Gbit/s VLC link was realized using non-return-to-zero on-off keying modulation, whereas a high-speed 10.5-Gbit/s VLC data rate was achieved by using a spectral-efficient 16-quadrature-amplitude-modulation orthogonal frequency-division multiplexing scheme. The reported high-performance sky-blue DFB laser is promising in enabling unexplored dense wavelength-division multiplexing schemes in VLC, narrow-line filtered systems, and other applications where single-frequency lasers are essential such as atomic clocks, high-resolution sensors, and spectroscopy. Single-frequency emitters at the sky-blue wavelength range will further benefit applications in the low-path-loss window of underwater media as well as those operating at the H-beta Fraunhofer line at ∼486nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA