Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124492, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38815299

RESUMEN

Fourier transform near-infrared (FT-NIR) spectroscopy is a versatile and non-destructive analytical tool widely utilized in industries such as food, pharmaceuticals, and agriculture. While traditional FT-NIR instruments pose limitations in terms of cost and complexity, the advent of portable and affordable systems like NeoSpectra Scanners has broadened accessibility. Partial Least Squares Regression (PLSR) stands as an industry-standard method in Chemometrics for analyzing chemical compositions. This work addresses optimizing PLSR models in FT-NIR spectroscopy, focusing on enhancing accuracy and adaptability in material analysis. Unlike traditional PLSR models which often rely on grid searching a limited number of parameters, such as latent variables, the presented approach effectively expands the parameter space. A novel framework combining Bayesian search and stacking techniques is introduced to enable more customization while ensuring time and performance efficiency, along with automation in model development. Bayesian search efficiently explores hyperparameters space, enabling faster convergence to optimal model settings without exhaustive exploration. The proposed stacked model leverages learned knowledge from the top-performing PLSR models optimized through Bayesian methods, amalgamating a unified and potent body of knowledge. Bayesian-stacked models are compared with PLSR models that use grid search for a limited parameter set. Findings show a marked improvement in model performance: a 51.5% reduction in Root Mean Square Error (RMSE) for the training dataset and a 26.1% reduction for the testing dataset, alongside a 10.9% increase in the correlation coefficient square (R2) for the training dataset and a 10.4% increase for the testing dataset. Notably, Bayesian search reduces the model optimization time by approximately 90% compared with the grid search. Furthermore, when addressing instrumental variations, the models demonstrate an additional improvement, evident in the average reduction of 24.1% in the mean range of prediction. Overall, results demonstrate that the presented approach not only increases the prediction accuracy but also offers a more efficient, automated and robust solution for diverse spectroscopic applications.

2.
Sci Adv ; 8(46): eadd3555, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36399576

RESUMEN

The refining process of petroleum crude oil generates asphaltenes, which poses complicated problems during the production of cleaner fuels. Following refining, asphaltenes are typically combusted for reuse as fuel or discarded into tailing ponds and landfills, leading to economic and environmental disruption. Here, we show that low-value asphaltenes can be converted into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG), via the flash joule heating (FJH) process. After successful conversion, we develop nanocomposites by dispersing AFG into a polymer effectively, which have superior mechanical, thermal, and corrosion-resistant properties compared to the bare polymer. In addition, the life cycle and technoeconomic analysis show that the FJH process leads to reduced environmental impact compared to the traditional processing of asphaltene and lower production cost compared to other FJH precursors. Thus, our work suggests an alternative pathway to the existing asphaltene processing that directs toward a higher value stream while sequestering downstream emissions from the processing.

3.
Adv Mater ; 33(44): e2101589, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34561916

RESUMEN

Hexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA