Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Math Methods Med ; 2022: 9878749, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35838368

RESUMEN

[This corrects the article DOI: 10.1155/2022/3041811.].

2.
Comput Math Methods Med ; 2022: 6927170, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251298

RESUMEN

In the past few years, big data related to healthcare has become more important, due to the abundance of data, the increasing cost of healthcare, and the privacy of healthcare. Create, analyze, and process large and complex data that cannot be processed by traditional methods. The proposed method is based on classifying data into several classes using the data weight derived from the features extracted from the big data. Three important criteria were used to evaluate the study as well as to benchmark the current study with previous studies using a standard dataset.


Asunto(s)
Macrodatos , Atención a la Salud/estadística & datos numéricos , Aprendizaje Automático , Algoritmos , Biología Computacional , Bases de Datos Factuales/estadística & datos numéricos , Registros Electrónicos de Salud/estadística & datos numéricos , Humanos
3.
Sensors (Basel) ; 22(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35161992

RESUMEN

Heterogeneous vehicular communication on the Internet of connected vehicle (IoV) environment is an emerging research theme toward achieving smart transportation. It is an evolution of the existing vehicular ad hoc network architecture due to the increasingly heterogeneous nature of the various existing networks in road traffic environments that need to be integrated. The existing literature on vehicular communication is lacking in the area of network optimization for heterogeneous network environments. In this context, this paper proposes a heterogeneous network model for IoV and service-oriented network optimization. The network model focuses on three key networking entities: vehicular cloud, heterogeneous communication, and smart use cases as clients. Most traffic-related data-oriented computations are performed at cloud servers for making intelligent decisions. The connection component enables handoff-centric network communication in heterogeneous vehicular environments. The use-case-oriented smart traffic services are implemented as clients for the network model. The model is tested for various service-oriented metrics in heterogeneous vehicular communication environments with the aim of affirming several service benefits. Future challenges and issues in heterogeneous IoV environments are also highlighted.


Asunto(s)
Transportes , Humanos
4.
Comput Math Methods Med ; 2022: 3041811, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38170039

RESUMEN

We develop effective medical image classification techniques, with an emphasis on histopathology and magnetic resonance imaging (MRI). The trainer utilized the curriculum as a starting point for a set of data and a restricted number of samples, and we used it as a starting point for a set of data. As calibrating a machine learning model is difficult, we used alternative methods as unsupervised feature extracts or weight-conditioning factors for identifying pathological histology pictures. As a result, the pretrained models will be trained on 3-channel RGB pictures, while the MRI sample has more slices. To alter the working model using the MRI data, the convolutional neural network (CNN) must be fine-tuned. Pretrained models are placed and then used as feature snippets. However, there is a scarcity of well-done medical photos, making training machine learning models a difficult endeavor to begin with. In any case, data augmentation aids in the generation of sufficient training samples; however, it is unclear if data augmentation aids in the prediction of unknown data samples. As a result, we fine-tuned machine learning models without using any additional data. Furthermore, rather than utilizing a standard machine learning classifier for the MRI data, we created a unique CNN that uses both 3D shear descriptors and deep features as input. This custom network identifies the MRI sample after processing our representation of the characteristics from beginning to end. On the hidden MRI dataset, our bespoke CNN outperforms traditional machine learning. Our CNN model is less prone to overfitting as a result of this. Furthermore, we have given cutting-edge outcomes employing machine learning.

5.
Sensors (Basel) ; 21(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201100

RESUMEN

Recently, green computing has received significant attention for Internet of Things (IoT) environments due to the growing computing demands under tiny sensor enabled smart services. The related literature on green computing majorly focuses on a cover set approach that works efficiently for target coverage, but it is not applicable in case of area coverage. In this paper, we present a new variant of a cover set approach called a grouping and sponsoring aware IoT framework (GS-IoT) that is suitable for area coverage. We achieve non-overlapping coverage for an entire sensing region employing sectorial sensing. Non-overlapping coverage not only guarantees a sufficiently good coverage in case of large number of sensors deployed randomly, but also maximizes the life span of the whole network with appropriate scheduling of sensors. A deployment model for distribution of sensors is developed to ensure a minimum threshold density of sensors in the sensing region. In particular, a fast converging grouping (FCG) algorithm is developed to group sensors in order to ensure minimal overlapping. A sponsoring aware sectorial coverage (SSC) algorithm is developed to set off redundant sensors and to balance the overall network energy consumption. GS-IoT framework effectively combines both the algorithms for smart services. The simulation experimental results attest to the benefit of the proposed framework as compared to the state-of-the-art techniques in terms of various metrics for smart IoT environments including rate of overlapping, response time, coverage, active sensors, and life span of the overall network.


Asunto(s)
Internet de las Cosas , Algoritmos , Simulación por Computador , Confidencialidad
6.
Sensors (Basel) ; 21(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800227

RESUMEN

Postquantum cryptography for elevating security against attacks by quantum computers in the Internet of Everything (IoE) is still in its infancy. Most postquantum based cryptosystems have longer keys and signature sizes and require more computations that span several orders of magnitude in energy consumption and computation time, hence the sizes of the keys and signature are considered as another aspect of security by green design. To address these issues, the security solutions should migrate to the advanced and potent methods for protection against quantum attacks and offer energy efficient and faster cryptocomputations. In this context, a novel security framework Lightweight Postquantum ID-based Signature (LPQS) for secure communication in the IoE environment is presented. The proposed LPQS framework incorporates a supersingular isogeny curve to present a digital signature with small key sizes which is quantum-resistant. To reduce the size of the keys, compressed curves are used and the validation of the signature depends on the commutative property of the curves. The unforgeability of LPQS under an adaptively chosen message attack is proved. Security analysis and the experimental validation of LPQS are performed under a realistic software simulation environment to assess its lightweight performance considering embedded nodes. It is evident that the size of keys and the signature of LPQS is smaller than that of existing signature-based postquantum security techniques for IoE. It is robust in the postquantum environment and efficient in terms of energy and computations.

7.
Sensors (Basel) ; 20(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353003

RESUMEN

In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA