Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Imaging ; 8(7)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35877632

RESUMEN

Two-Dimensional (2D) object detection has been an intensely discussed and researched field of computer vision. With numerous advancements made in the field over the years, we still need to identify a robust approach to efficiently conduct classification and localization of objects in our environment by just using our mobile devices. Moreover, 2D object detection limits the overall understanding of the detected object and does not provide any additional information in terms of its size and position in the real world. This work proposes an object localization solution in Three-Dimension (3D) for mobile devices using a novel approach. The proposed method works by combining a 2D object detection Convolutional Neural Network (CNN) model with Augmented Reality (AR) technologies to recognize objects in the environment and determine their real-world coordinates. We leverage the in-built Simultaneous Localization and Mapping (SLAM) capability of Google's ARCore to detect planes and know the camera information for generating cuboid proposals from an object's 2D bounding box. The proposed method is fast and efficient for identifying everyday objects in real-world space and, unlike mobile offloading techniques, the method is well designed to work with limited resources of a mobile device.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4518-4521, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018998

RESUMEN

Stress analysis and assessment of affective states of mind using ECG as a physiological signal is a burning research topic in biomedical signal processing. However, existing literature provides only binary assessment of stress, while multiple levels of assessment may be more beneficial for healthcare applications. Furthermore, in present research, ECG signal for stress analysis is examined independently in spatial domain or in transform domains but the advantage of fusing these domains has not been fully utilized. To get the maximum advantage of fusing different domains, we introduce a dataset with multiple stress levels and then classify these levels using a novel deep learning approach by converting ECG signal into signal images based on R-R peaks without any feature extraction. Moreover, We made signal images multimodal and multi-domain by converting them into time-frequency and frequency domain using Gabor wavelet transform (GWT) and Discrete Fourier Transform (DFT) respectively. Convolutional Neural networks (CNNs) are used to extract features from different modalities and then decision level fusion is performed for improving the classification accuracy. The experimental results on an in-house dataset collected with 15 users show that with proposed fusion framework and using ECG signal to image conversion, we reach an average accuracy of 85.45%.


Asunto(s)
Redes Neurales de la Computación , Análisis de Ondículas , Electrocardiografía , Procesamiento de Señales Asistido por Computador
3.
Neural Netw ; 130: 206-228, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32688204

RESUMEN

In unsupervised learning, there is no apparent straightforward cost function that can capture the significant factors of variations and similarities. Since natural systems have smooth dynamics, an opportunity is lost if an unsupervised objective function remains static. The absence of concrete supervision suggests that smooth dynamics should be integrated during the training process. Compared to classical static cost functions, dynamic objective functions allow to better make use of the gradual and uncertain knowledge acquired through pseudo-supervision. In this paper, we propose Dynamic Autoencoder (DynAE), a novel model for deep clustering that addresses a clustering-reconstruction trade-off, by gradually and smoothly eliminating the reconstruction objective function in favor of a construction one. Experimental evaluations on benchmark datasets show that our approach achieves state-of-the-art results compared to the most relevant deep clustering methods.


Asunto(s)
Aprendizaje Profundo , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Análisis por Conglomerados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA