RESUMEN
Screening of mutations that cause ß-thalassaemia in the Bangladeshi population led to the identification of a patient with a combination of two rare mutations, Hb Monroe and HBB: -92 C > G. The ß-thalassaemia major male individual was transfusion-dependent and had an atypical ß-globin gene cluster haplotype. Of the two mutations, Hb Monroe has been characterized in detail. Clinical effects of the other mutation, HBB: -92 C > G, are unknown so far. Bioinformatics analyses were carried out to predict the possible effect of this mutation. These analyses revealed the presence of a putative binding site for Egr1, a transcription factor, within the HBB: -92 region. Our literature survey suggests a close relationship between different phenotypic manifestations of ß-thalassaemia and Egr1 expression.
RESUMEN
Screening of mutations that cause β-thalassaemia in the Bangladeshi population led to the identification of a patient with a combination of two rare mutations, Hb Monroe and HBB: -92C>G.The β-thalassaemia major male individual was transfusion-dependent and had an atypical β-globin gene cluster haplotype. Of the two mutations, Hb Monroe has been characterized in detail. Clinical effects of the other mutation, HBB: -92C>G,are unknown so far. Bioinformatics analyses were carried out to predict the possible effect of this mutation. These analyses revealed the presence of a putative binding site for Egr1, a transcription factor, within the HBB:-92 region. Our literature survey suggests a close relationship between different phenotypic manifestations of β-thalassaemia and Egr1 expression.