Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34832382

RESUMEN

The synthesis of nanoparticles by green approaches is gaining unique importance due to its low cost, biocompatibility, high productivity, and purity, and being environmentally friendly. Herein, biomass filtrate of Pseudomonas aeruginosa isolated from mangrove rhizosphere sediment was used for the biosynthesis of zinc oxide nanoparticles (ZnO-NPs). The bacterial isolate was identified based on morphological, physiological, and 16S rRNA. The bio-fabricated ZnO-NPs were characterized using color change, UV-visible spectroscopy, FT-IR, TEM, and XRD analyses. In the current study, spherical and crystalline nature ZnO-NPs were successfully formed at a maximum SPR (surface plasmon resonance) of 380 nm. The bioactivities of fabricated ZnO-NPs including antibacterial, anti-candida, and larvicidal efficacy were investigated. Data analysis showed that these bioactivities were concentration-dependent. The green-synthesized ZnO-NPs exhibited high efficacy against pathogenic Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and unicellular fungi (Candida albicans) with inhibition zones of (12.33 ± 0.9 and 29.3 ± 0.3 mm), (19.3 ± 0.3 and 11.7 ± 0.3 mm), and (22.3 ± 0.3 mm), respectively, at 200 ppm. The MIC value was detected as 50 ppm for E. coli, B. subtilis, and C. albicans, and 200 ppm for S. aureus and P. aeruginosa with zones of inhibition ranging between 11.7 ± 0.3-14.6 ± 0.6 mm. Moreover, the biosynthesized ZnO-NPs showed high mortality for Culex pipiens with percentages of 100 ± 0.0% at 200 ppm after 24 h as compared with zinc acetate (44.3 ± 3.3%) at the same concentration and the same time.

2.
Biology (Basel) ; 10(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34439929

RESUMEN

Fusarium solani, the causative agent of root rot disease is one of the major constraints of faba bean (Vicia faba L.) yield worldwide. Essential oils have become excellent plant growth stimulators besides their antifungal properties. Foeniculum vulgare Mill. (fennel) is a familiar medicinal plant that has inhibitory effects against phytopathogenic fungi. Herein, different concentrations of fennel seed essential oil (FSEO) (12.5, 25, 50, 100, 200 and 400 µL/mL) were examined against F. solani KHA10 (accession number MW444555) isolated from rotted roots of faba bean in vitro and in vivo. The chemical composition of FSEO, through gas chromatography/mass spectroscopy, revealed 10 major compounds. In vitro, FSEO inhibited F. solani with a minimum inhibitory concentration (MIC) of 25 µL/mL. In vivo, FSEO suppressed Fusarium root rot disease in Vicia faba L. by decreasing the disease severity (61.2%) and disease incidence (50%), and acted as protective agent (32.5%) of Vicia faba L. Improvements in morphological and biochemical parameters were recorded in FSEO-treated faba seeds. Moreover, the expression level of the defense-related genes defensin and chitinase was noticeably enhanced in treated plants. This study suggested using FSEO as a promising antifungal agent against F. solani not only to control root rot disease but also to enhance plant growth and activate plant defense.

3.
Biol Trace Elem Res ; 199(10): 3998-4008, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33387272

RESUMEN

In this study, green and eco-friendly biosynthesis of selenium nanoparticles (Se-NPs) were performed using Penicillium expansum ATTC 36200 for multiple biomedical applications. Mycosynthesized Se-NPs were completely characterized using UV, FT-IR, XRD, SEM, and TEM techniques. Se-NPs biosynthesized by P. expansum was characterized as a spherical shape with average size 4 to 12.7 nm. Moreover, Se-NPs were evaluated for multiple biomedical applications as antimicrobial, antioxidant, and anticancer activities and hemocompatibility. Results illustrated that Se-NPs have potential antimicrobial activity against Gram-positive (Bacillus subtilis ATCC6051 and Staphylococcus aureus ATCC23235), Gram-negative bacteria (Escherichia coli ATCC8739and Pseudomonas aeruginosa ATCC9027), fungi (Candida albicans ATCC90028, Aspergillus niger RCMB 02724 and Aspergillus fumigatus RCMB 02568), and antioxidant activity. Additionally, Se-NPs exhibited anticancer activity against PC3 cell line; IC50 was 99.25 µg/mL. Meanwhile, they showed non-hemolytic activity on human RBCs at concentration up to 250 µg/mL. In conclusion, biosynthetic Se-NPs by P. expansum are promising for many safe-use biomedical applications.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Penicillium , Selenio , Antibacterianos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Selenio/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
4.
Biomolecules ; 11(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499067

RESUMEN

Endophytic fungi are widely present in internal plant tissues and provide different benefits to their host. Medicinal plants have unexplored diversity of functional fungal association; therefore, this study aimed to isolate endophytic fungi associated with leaves of medicinal plants Ephedra pachyclada and evaluate their plant growth-promoting properties. Fifteen isolated fungal endophytes belonging to Ascomycota, with three different genera, Penicillium, Alternaria, and Aspergillus, were obtained from healthy leaves of E. pachyclada. These fungal endophytes have varied antimicrobial activity against human pathogenic microbes and produce ammonia and indole acetic acid (IAA), in addition to their enzymatic activity. The results showed that Penicillium commune EP-5 had a maximum IAA productivity of 192.1 ± 4.04 µg mL-1 in the presence of 5 µg mL-1 tryptophan. The fungal isolates of Penicillium crustosum EP-2, Penicillium chrysogenum EP-3, and Aspergillus flavus EP-14 exhibited variable efficiency for solubilizing phosphate salts. Five representative fungal endophytes of Penicillium crustosum EP-2, Penicillium commune EP-5, Penicillium caseifulvum EP-11, Alternaria tenuissima EP-13, and Aspergillus flavus EP-14 and their consortium were selected and applied as bioinoculant to maize plants. The results showed that Penicillium commune EP-5 increased root lengths from 15.8 ± 0.8 to 22.1 ± 0.6. Moreover, the vegetative growth features of inoculated maize plants improved more than the uninoculated ones.


Asunto(s)
Endófitos/metabolismo , Hongos/metabolismo , Plantas Medicinales/metabolismo , Alternaria , Amoníaco/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Ascomicetos/metabolismo , Aspergillus , Ephedra , Fermentación , Ácidos Indolacéticos/química , Penicillium , Fosfatos/química , Filogenia , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA