Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 271(14): 8034-45, 1996 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-8626486

RESUMEN

Sodium channels posses receptor sites for many neurotoxins, of which several groups were shown to inhibit sodium current inactivation. Receptor sites that bind alpha- and alpha-like scorpion toxins are of particular interest since neurotoxin binding at these extracellular regions can affect the inactivation process at intramembranal segments of the channel. We examined, for the first time, the interaction of different scorpion neurotoxins, all affecting sodium current inactivation and toxic to mammals, with alpha-scorpion toxin receptor sites on both mammalian and insect sodium channels. As specific probes for rat and insect sodium channels, we used the radiolabeled alpha-scorpion toxins AaH II and LqhalphaIT, the most active alpha-toxins on mammals and insect, respectively. We demonstrate that the different scorpion toxins may be classified to several groups, according to their in vivo and in vitro activity on mammalian and insect sodium channels. Analysis of competitive binding interaction reveal that each group may occupy a distinct receptor site on sodium channels. The alpha-mammal scorpion toxins and the anti-insect Lqh alphaIT bind to homologous but not identical receptor sites on both rat brain and insect sodium channels. Sea anemone toxin ATX II, previously considered to share receptor site 3 with alpha-scorpion toxins, is suggested to bind to a partially overlapping receptor site with both AaH II and Lqh alphaIT. Competitive binding interactions with other scorpion toxins suggest the presence of a putative additional receptor site on sodium channels, which may bind a unique group of these scorpion toxins (Bom III and IV), active on both mammals and insects. We suggest the presence of a cluster of receptor sites for scorpion toxins that inhibit sodium current inactivation, which is very similar on insect and rat brain sodium channels, in spite of the structural and pharmacological differences between them. The sea anemone toxin ATX II is also suggested to bind within this cluster.


Asunto(s)
Neuronas/efectos de los fármacos , Neurotoxinas/toxicidad , Oxocinas , Venenos de Escorpión/toxicidad , Canales de Sodio/química , Secuencia de Aminoácidos , Animales , Cucarachas , Saltamontes , Activación del Canal Iónico , Toxinas Marinas/farmacología , Ratones , Datos de Secuencia Molecular , Ratas , Ratas Wistar , Venenos de Escorpión/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Sinaptosomas/metabolismo , Veratridina/farmacología
2.
J Biol Chem ; 270(25): 15153-61, 1995 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-7797499

RESUMEN

At least six topologically separated neurotoxin receptor sites have been identified on sodium channels that reveal strong allosteric interactions among them. We have studied the allosteric modulation induced by veratridine, binding to receptor site 2, and brevetoxin PbTx-1, occupying receptor site 5, on the binding of alpha-scorpion toxins at receptor site 3, on three different neuronal sodium channels: rat brain, locust, and cockroach synaptosomes. We used 125I-AaH II, the most active alpha-scorpion toxin on vertebrates, and 125I-Lqh alpha IT, shown to have high activity on insects, as specific probes for receptor site 3 in rat brain and insect sodium channels. Our results reveal that brevetoxin PbTx-1 generates three types of effects at receptor site 3:1) negative allosteric modulation in rat brain sodium channels, 2) positive modulation in locust sodium channels, and 3) no effect on cockroach sodium channel. However, PbTx-1 activates sodium channels in cockroach axon similarly to its activity in other preparation. Veratridine positively modulates both rat brain and locust sodium channels but had no effect on alpha-toxin binding in cockroach. The dramatic differences in allosteric modulations in each sodium channel subtype suggest structural differences in receptor sites for PbTx-1 and/or at the coupling regions with alpha-scorpion toxin receptor sites in the different sodium channels, which can be detected by combined application of specific channel modifiers and may elucidate the dynamic gating activity and the mechanism of allosteric interactions among various neurotoxin receptors.


Asunto(s)
Encéfalo/metabolismo , Toxinas Marinas/farmacología , Oxocinas , Venenos de Escorpión/metabolismo , Venenos de Escorpión/farmacología , Canales de Sodio/metabolismo , Sinaptosomas/metabolismo , Veratridina/farmacología , Regulación Alostérica , Animales , Axones/efectos de los fármacos , Axones/fisiología , Sitios de Unión , Saltamontes , Radioisótopos de Yodo , Cinética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neurotoxinas/metabolismo , Neurotoxinas/farmacología , Técnicas de Placa-Clamp , Periplaneta , Ratas , Ratas Wistar , Canales de Sodio/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA