Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(38): eabg9358, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34524849

RESUMEN

High thermal gradients and complex melt pool instabilities involved in powder bed fusion­based metal additive manufacturing using focused Gaussian-shaped beams often lead to high porosity, poor morphological quality, and degraded mechanical performance. We show here that Bessel beams offer unprecedented control over the spatiotemporal evolution of the melt pool in stainless steel (SS 316L) in comparison to Gaussian beams. Notably, the nondiffractive nature of Bessel beams enables greater tolerance for focal plane positioning during 3D printing. We also demonstrate that Bessel beams significantly reduce the propensity for keyhole formation across a broad scan parameter space. High-speed imaging of the melt pool evolution and solidification dynamics reveals a unique mechanism where Bessel beams stabilize the melt pool turbulence and increase the time for melt pool solidification, owing to reduced thermal gradients. Consequently, we observe a distinctively improved combination of high density, reduced surface roughness, and robust tensile properties in 3D-printed test structures.

2.
Science ; 368(6491): 660-665, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32381724

RESUMEN

State-of-the-art metal 3D printers promise to revolutionize manufacturing, yet they have not reached optimal operational reliability. The challenge is to control complex laser-powder-melt pool interdependency (dependent upon each other) dynamics. We used high-fidelity simulations, coupled with synchrotron experiments, to capture fast multitransient dynamics at the meso-nanosecond scale and discovered new spatter-induced defect formation mechanisms that depend on the scan strategy and a competition between laser shadowing and expulsion. We derived criteria to stabilize the melt pool dynamics and minimize defects. This will help improve build reliability.

3.
Nat Commun ; 10(1): 1987, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040270

RESUMEN

Laser powder bed fusion additive manufacturing is an emerging 3D printing technique for the fabrication of advanced metal components. Widespread adoption of it and similar additive technologies is hampered by poor understanding of laser-metal interactions under such extreme thermal regimes. Here, we elucidate the mechanism of pore formation and liquid-solid interface dynamics during typical laser powder bed fusion conditions using in situ X-ray imaging and multi-physics simulations. Pores are revealed to form during changes in laser scan velocity due to the rapid formation then collapse of deep keyhole depressions in the surface which traps inert shielding gas in the solidifying metal. We develop a universal mitigation strategy which eliminates this pore formation process and improves the geometric quality of melt tracks. Our results provide insight into the physics of laser-metal interaction and demonstrate the potential for science-based approaches to improve confidence in components produced by laser powder bed fusion.

4.
Sci Rep ; 7(1): 4085, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28642468

RESUMEN

The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results. Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(4 Pt 2): 046406, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23214699

RESUMEN

We study the problem of electron-ion temperature equilibration in plasmas. We consider pure H at various densities and temperatures and Ar-doped H at temperatures high enough so that the Ar is fully ionized. Two theoretical approaches are used: classical molecular dynamics (MD) with statistical two-body potentials and a generalized Lenard-Balescu (GLB) theory capable of treating multicomponent weakly coupled plasmas. The GLB is used in two modes: (1) with the quantum dielectric response in the random-phase approximation (RPA) together with the pure Coulomb interaction and (2) with the classical (ℏ→0) dielectric response (both with and without local-field corrections) together with the statistical potentials. We find that the MD results are described very well by classical GLB including the statistical potentials and without local-field corrections (RPA only); worse agreement is found when static local-field effects are included, in contradiction to the classical pure-Coulomb case with like charges. The results of the various approaches are all in excellent agreement with pure-Coulomb quantum GLB when the temperature is high enough. In addition, we show that classical calculations with statistical potentials derived from the exact quantum two-body density matrix produce results in far better agreement with pure-Coulomb quantum GLB than classical calculations performed with older existing statistical potentials.

6.
Phys Rev Lett ; 95(18): 185301, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16383910

RESUMEN

We calculate properties of a model of 4He in Vycor using the path integral Monte Carlo method. We find that 4He forms a distinct layered structure with a highly localized first layer, a disordered second layer with some atoms delocalized and able to give rise to the observed superfluid response, and higher layers of nearly perfect crystals. The addition of a single 3He atom was enough to bring down the total superfluidity by blocking the exchange in the second layer. Our results are consistent with the persistent liquid-layer model to explain the observations. Such a model may be relevant to the experiments on bulk solid 4He, if there is a fine network of grain boundaries in those systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA